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Introduction

 

This paper takes two approaches to describe aspects of physical interfaces in the electronic arts. One
approach  takes a Human Factors point of view of the different interactions that can take place in electronic
art, and the other more practical approach describes sensor technologies (and a sensor categorisation) to
make the physical interaction possible.

In this introduction the historical development of the ergonomic aspects of the design of instruments are
described. 

Because the earliest examples of the usage of electronic media to make art can be found in music, and
because music has a long tradition of performance and of a precise and intimate relationship between
human and technology, this paper often takes electronic musical instruments as a starting point. From
there, the paper aims to describe the general field of art forms using electronics (visual arts, installations,
architecture, network, music). 

Humans have always been making music by using objects and artefacts. Every known way of generating
sound, using strings, bells, reeds etc. has been used to make musical instruments. In all stages of
engineering (manual / mechanical / electromechanical / electronic / digital) the technology was reflected in
the instruments. The nature of the sound generating process traditionally dictated the design of the
instrument. Take for instance bowing a string.  On a violin the strings are short and therefore fit on an
instrument that is held under the player's chin. Longer strings to reach lower registers called for a bigger
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instrument, for instance the cello that rests with a pin on the ground and is held between the player's knees.
Even longer and thicker strings for bass notes demands such a big instrument that the player has to stand
next to it and embrace it. In instruments that use electricity in any form this relationship is often less clear.

 

The Ergonomics of Electronic Instruments

 

Soon after electricity was discovered people started to use this new medium to generate sound. When
the electrical sciences became more serious and the grasp of humankind on this new medium enabled the
building of all sorts of devices for communication, the electrical instruments became more sophisticated
and in the first  half of the 20th century a lot of new instruments sprung up. Most of them where based on a
keyboard, which had proven to be a versatile interface since it can be found for centuries on a variety of
instruments like the piano, harpsichord, organ, etc. There were interesting exceptions of course, like the
well known Theremin which operates with gesture-sensitive antennas changing pitch and volume of a tone
generated by an oscillator [Martin, 1995]. Another example is the Trautonium, which works with a touch
sensitive strip. Of the instruments that did use the keyboard as their main interface part, like the ondes
Martenot (France) [Ruschkowski, 1990] and the Electronic Sackbutt (Canada) [Young, 1984], most used a
variety of additions to enhance the sensitivity. A good overview of the early days of electronic music (and
the business aspects of it) can be found in Joel Chadabe's book [1997].

Instrument designers like Leon Theremin, Maurice Martenot, Oskar Sala and Hugh Le Caine  seemed to
exploit the freedom of design offered by the new medium, which imposed far  less on the design of the
shape and dimensions of the instrument than the traditional instruments did. They could take the

properties and possibilities (and limitations) of the human being as a starting point for the design

 

1

 

. At the
same time a lot had to be developed on the sound synthesis side, and also the invention and usage of the
record player and later the tape machines in electronic music led to the field turning away from real-time
music performance.

 

The Ergonomics of Digital Instruments

 

For many years, the keyboard and a number of knobs were the standard interface objects for making
electronic music. Today there is a wide (if not to say wild) variety of sensors available. Virtually any real-
world action can be translated into electrical energy and therefore serve as a control signal for an electronic
(analog or digital) sound source.

Although the advent of digital technologies brought us even more ways of synthesising sounds (and
sampling as a convenient way of recording, manipulating and playing back sounds), the distance between
controller and that which is controlled became even bigger. The introduction of the MIDI protocol around
the mid-eighties detached the control device (the interface or instrument) from the sound source, which
widened the gap even further but also introduced new possibilities. It became possible to develop
alternative MIDI-controllers, which could be entirely new forms based on humans rather than on the
technology. In a way, one could argue that it is only the most obvious thing to do - devise instrument forms
especially for this medium. Michel Waisvisz was an early example, inventing his "Hands" around 1983
[Waisvisz, 1985, 1999], and he still emphasises that in fact the piano keyboard should be regarded as the
alternative controller for electronic instruments. [Steinglass, 1999].

MIDI controllers also became available in many known instrument forms (like the guitar and several
wind instruments) to enable musicians already proficient on these traditional instrument forms to use their
skills and playing techniques. Hybrid forms came about as well. In this paper these categories will be
described and illustrated with examples of instruments and installations built and / or developed by the
author. 

The question of how to deal with the total freedom of being able to design an instrument based on the
human (in)capabilities instead of a traditional instrument form, has not been answered yet. A suggested
approach is to look at the most sensitive effectors of the human body, such as the hands and the lips, which
also have the finest control, and look at the gestures and manipulations that humans use in traditional
instruments or in other means of conveying information.

 

1.   This was even before Ergonomics or Human Factors was established as a serious field of research 
around 1950!
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Tactual Feedback

 

Due to the decoupling of the sound source and control surface, a lot of 

 

feedback

 

 from the process
controlled was lost. In electronic musical instruments, the main sense addressed is the auditory through the
sounds produced.  Visual feedback of more analytic parameters is often displayed on LCD screens. But the
touch feedback from the sound source is hardly used, the feel of a key that plays a synthesised tone will
always be the same irrespective of the properties of the sound (the device can even be turned off entirely!). 

Some work has been carried out (partly borrowing from the research fields of Human-Computer
Interaction (HCI) and Virtual Environments) on addressing the sense of touch, to restore the relationship
between that which is felt and the sounds produced. This is an important source of information about the
sound, and the information is often sensed at the point where the process is being manipulated (at the
fingertips or lips). This can be described as articulatory feedback.

 

Conclusion

 

This paper consist of two parts. The next chapter outlines a general framework to classify interaction in
the electronic arts, and the last chapter describes techniques and technologies (the nuts and bolts) of how to
build these interactions. Throughout the paper examples are used of instruments I have built, or projects I
was involved in. It is therefore work in progress, I intend to keep updating the paper with knowledge I
acquire after this publication.

With the technologies described in this chapter the design of electronic musical instruments and
development of interfaces for visual arts can be based on human beings rather then on the technology. This
way, we hope to achieve maximum sensitivity along many dimensions (or degrees of freedom), with
profound feedback addressing many sensory modalities.

 

Interaction in Performance Arts

 

There are many interactions possible between performer, (electronic) system and audience, involving
various modes of communication. In this chapter, a concise overview and theoretic framework based on
research mainly carried out in the field of HCI (Human-Computer Interaction) is described. The approach
described focuses on the physical interaction between people and systems, rather then the interactive
behaviour as a result of machine cognition.

Interaction between a human and a system is a two way process: 

 

control

 

 and 

 

feedback

 

. The interaction
takes place through an interface (or instrument) which translates real world actions into signals in the
virtual domain of the system. These are usually electric signals, often digital as in the case of a computer.
The system is controlled by the user, and the system gives feedback to help the user to articulate the control,
or feed-forward to actively guide the user. Feed forward is generated by the system to reveal information
about its internal state.

In this chapter the interaction between humans and electronic systems is described in general, and then
interaction is grouped and described in three categories: performer - system (e.g. a musician playing an
instrument), system - audience (e.g. installation art), and performer - system - audience. The direct
interaction between the performer and audience can always be present, but this paper focuses on the
interaction mediated by an electronic system. The interaction between multiple performers as in an
ensemble or band, even when it is mediated by a system (for instance The Hub or the Sensorband network
concerts [Bongers, 1998b]), is not addressed in this paper. 

The categories will be illustrated by projects where the author was involved as an instrument builder or
interaction researcher.

 

Human-Machine Interaction

 

The diagram below illustrates the classic human-machine interaction loop (by personal definition the
machine is square and the human is round). The system, or 'machine' in the diagram, is defined very wide.
It can consist of several linked elements or devices, as is often the case with computers through networks
and protocols like MIDI (the language through which synthesisers, computers etc. can communicate). The
'system' can also refer to a musical instrument.
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Fig. 1. Human-Machine Interaction.

An interaction-'loop' may start when the user wants to activate the system. The system is controlled by a
user through its inputs, it processes the information, and displays a result. For instance, when the user
presses a key on a computer keyboard, a character is displayed on the screen. Or, in the case of an electronic
musical instrument, a sound is displayed through the loudspeakers after a key is pressed. The human
perceives the information from the system, processes it and controls again. 

Note that in some cases only parts of the loop can occur, for instance when the cognition is left out on
one side or the other this part rather 

 

reacts

 

 than 

 

interacts

 

. Many interactive systems in new media arts are
in fact reactive systems. Ideally, interaction between a human and a system should be mutually influential.

The systems communicates with its environment through 

 

transducers

 

, devices that transduce
(translate) real-world signals into machine-world signals (

 

sensors

 

) and vice versa (

 

actuators

 

). 

 

Sensors

 

 are the sense organs of a machine. Through its sensing inputs, a machine can communicate with
its environment and therefore be controlled. A sensor converts any physical energy (from the outside
world) into electricity (into the machine world). There are sensors available for all things perceivable by
human beings, and more. For instance, kinetic energy (movement), light, sound, but also properties
unperceivable for human beings can be sensed such as electromagnetic fields and ultrasonic sound. Sensors
are described in the next part of this paper.

Machine output takes place through 

 

actuators

 

. Actuators are the opposite of sensors, i.e., they convert
electrical energy from the machine world into other energy forms for instance those perceivable by human
beings. For instance, a loudspeaker converts electricity in changes in air pressure perceivable by the human
ear, a video display shows images perceivable by the eye, motors or vibrating piezo elements may address
the sense of touch. The interaction usually takes place by means of an interface (instrument). Following the
definitions of the diagram, the interface is part of the system or machine and consists of the sensors and

actuators.

 

2

 

2. This notion is challenged by the SciFi term 'cyborgs' (Cybernetic Organism), where interfaces 
become part of the human body. This work is carried out in scientific research, as well as in the arts 
(e.g. the Australian performance artist Stelarc).
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Modalities

 

Several interaction 

 

modalities

 

, or communication channels, can be distinguished. Modalities are closely
related to perception and motor control: the visual input modality for seeing things, the auditory input
modality for hearing things, or the manual output modality where the human physically controls things.

Fig. 2. Examples of modalities.

Other examples of 

 

sensory modalities

 

 are: smell, taste and touch. Within each sensory modality other
(sub)modalities can be distinguished, for instance the visual modality can be used for reading text, reading
a musical score or watching a movie.

The human sense of touch (tactual perception) differs in an important way from our other senses in that
it gathers most information about the outside world mainly by active explorations. In contrast to sound for
instance, which is very hard for us to even neglect, we perceive object dimensions and properties often only
by reaching out and touching them, and moving around the surface. Understanding the sense of touch is
important for the work on physical interaction as described in this paper. The sense of touch actually
consists of three main senses, which are often difficult to separate. Tactile perception receives its
information through the 

 

cutaneous

 

 sensitivity of the skin, when the human is not moving. 

 

Proprioceptors

 

(mechanoreceptors that sense forces in the muscles, tendons and joints) are the main input for our
kinaesthetic sense, which is the awareness of movement, position and orientation of limbs and parts of the
human body. Haptic perception uses information from both the tactile and kinaesthetic senses. The
movement sensed by the kinaesthetic or haptic sense can be a result of actions from the human (active
touch, which involves the perception of the signals the brain sends to the muscles), or from forces outside
the body (passive touch).

Active haptic perception, when actively gathering information about objects outside of the body, is the
main sense that can be applied in interfaces.

The tactile, kinaesthetic and haptic perception together, is called 

 

tactual perception

 

 as defined by
Loomis & Leederman [1986] building on the seminal work of J.J. Gibson in the fifties.

Human 

 

output modalities

 

 mainly involve the motor system; muscles are used to move things around but
are also used for finer tasks such as handwriting and speech. A special case is bio-electricity, such as
electromyographic signals (EMG) as measured on the skin which are related to muscle activity, and
electroencephalographic signals (EEG) related to brain activity (e.g. alpha waves). These signals can be can
be measured by electrodes and used to control a system, a good description can be found in a paper by Tom
Zimmerman et al, [1995] and Hugh Lusted & Benjamin Knapp [1996]. Bio-electricity is used for musical
performance for instance by Atau Tanaka of Sensorband [Tanaka, 1993], [Bongers, 1998b] [Editors’ note:
see the article by Tanaka in this volume].
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Michel Waisvisz was an early pioneer, using galvanic skin response (the changing electrical resistance of
the skin) by sticking his fingers into (analog) electronics directly, resulting in the well-known Crackle boxes
[Krefeld, 1990].

Some activities or interactions can be 

 

multimodal

 

, in fact, most activities in everyday life involve
multiple modalities. For instance, eating may involve a combination of 

 

taste

 

 (the four tastes of sweet, bitter,
sour or salt), 

 

smell

 

 and 

 

touch

 

 (texture, form, softness). 

 

Virtuality

 

In addition to the diagram above, it is relevant to emphasise the distinction between 

 

active

 

 and 

 

passive

 

system feedback. For instance, when pressing a button on an electronic device, one may feel and hear the
mechanical 'click' regardless of the state of the device. The device can even be turned off and still the
feedback is perceived. This key click can be called passive or inherent feedback, i.e. not generated by the
system. In the case of a synthesiser, the sounds produced by the system as a result of the user action are
active, i.e. generated by the system (controlled by the performer). Synthesised experiences are also called

 

virtual

 

, as opposed to real (mechanical, inherent or passive) experiences [Robinett, 1992]. An electronic
system (often a computer) interface generates things that, through its output devices, can be perceived by
humans. These are virtual, because they are not really there but can be perceived and experienced. For
example, one can listen to sounds generated by a system (synthesised, or sampled and played back). Other
examples are computer generated images, or touch. 

In order to synthesise a more convincing experience, multiple senses of the human could be addressed.
These multimodal interfaces [Schomaker et al., 1995], [Bongers et al, 1998a] enable users to hear, see and
feel the virtual world and influence it in many ways including for instance speech.

The importance of the sense of touch in traditional musical instruments, as well as in tools used for
other art forms, is well known. Due to the de-coupling of control and feedback in electronic systems, this
form of information about the process is often lost. Ultimately, the 'feel' has to be synthesised artificially,
just as the sounds and images are synthesised by such a system. This is described in another paper
[Bongers, 1998c]. 

 

Performer - System

 

The most common interaction in the electronic arts is the interaction between performer and the
system. This can be the musician playing an electronic instrument, a painter drawing with a stylus on an
electronic tablet, or an architect operating a CAD (Computer Aided Design) program.

 

Electronic Musical Instruments

 

The communication between a musician and the instrument is often intimate and precise. This has been
the case with traditional (acoustic) instruments, and developers of electronic instruments often strive for
the same level of intimacy and precision.

 

Electronic versions of traditional instruments

 

Early examples of the electric guitar, invented by Leo Fender around 1950, are the Fender Telecaster and
Stratocaster and the Gibson Les Paul. These instruments offer new possibilities for playing, as pioneered by
Jimi Hendrix and Jaco Pastorius (on the electric bass guitar, an instrument invented by Fender), and new
playing techniques are still discovered. Another example is the Fender Rhodes, an electric piano. 

 

Electric

 

instruments use the same sound production as their acoustic counterparts, but are electrically amplified.

 

Electronic

 

 instruments are based on electronic sounds sources such as oscillators.
Many early attempts to make electronic musical instruments were based on copying traditional

instruments forms. Yamaha, Roland and Syntaxxe pioneered with electronic guitars, Akai brought out the
EWI (Electronic Wind Instrument, a saxophone) and the EVI (Electronic Valve Instrument, a trumpet).
Other examples of the electronic saxophone are the Yamaha WX-7 and the Lyricon (which worked with an
analog synthesizer). Not to mention the keyboard, which falls in this category as well.

These instruments were to different extents incredibly limited in sensitivity and expressiveness
compared to their acoustic (and electric!) counterparts, but this can be seen as a trade-off against the
enormous range of different sounds. For a while, people were thrilled by the possibility of being able to play
organ sounds on a trumpet, or flute sounds on a keyboard. This is a mixed blessing of course, because the
relationship between the controlling device and the sounds produced is distorted, a mismatch which can
result in lack of expressiveness.
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Alternate controllers

 

As stated earlier, it is possible to design instruments in entirely new forms. Several gestural controllers
were invented, and instruments that (still) have to be touched. The Theremin is the earliest example of an
gestural controller, and the Thunder by Don Buchla is an example of an alternate controller that had to be
touched through a touch-control surface that reflects the human hand. 

People started using electronic gloves, inspired by the success of the VPL Data Glove [Zimmerman et al,
1987] for use in virtual environments (the popular term is Virtual Reality [Rheingold, 1991]). Often the
Mattel Powerglove, a cheaper version intended for computer games [Gold, 1992] that came out in 1989, was
used for these applications.

An example of a musical glove is the Lady's Glove, built for Laetitia Sonami from Oakland (CA) in 1994.
She uses a glove fitted with a variety of sensors to enhance control (see the picture below, middle)
[Chadabe, 1997, pp.229 - 230]

Fig. 3. Alternate controllers.

In the Netherlands, Michel Waisvisz, director of STEIM (Studio for Electro-Instrumental Music) devised
instruments like The Hands and The Web (as pictured above) to explore the possibilities of new instrument
forms for improved gestural and sensitive control over the sounds produced[Bongers, 1994].

Another example is the English composer and performer Walter Fabeck, who plays his Chromasone, and
Sensorband [1999], [Bongers, 1998b], a trio of musicians all playing on novel instruments.

 

Hybrid instruments

 

Musicians using traditional instruments have often extended the instruments, for instance preparations
of the piano. Electronic extensions are a logical step, also because it enables an instrumentalist to use the
proficiency in playing acquired after many years of training. 

Fig. 4. Hybrid instruments.

The pictures above show some examples, an extended guitar built for the Israelian Sonologist Gil
Wasserman in 1995, and the "Meta-trumpet" developed in 1993 for Jonathan Impett [1994a, 1994b, 1996].

 

Visual Arts

 

Computers have been used for drawing and editing of pictures and video. This became more common
after the introduction of the Graphical User Interface (GUI) and Desktop Publishing (DTP) in the mid
eighties, developed first at Xerox PARC with the Star computer and further developed by Apple with the
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Lisa and the Macintosh. Often the interface consisted of the common elements: virtual objects on the
computer screen (icons and buttons) controlled by the mouse and keyboard. However, the two degrees of
freedom of movement the mouse offers is severely limiting  expression compared to the amount of DOF's
the human hand has. A more suitable tool is the graphic tablet, one could say the electronic brush for the
painter. Current day versions such as developed by Wacom are quite sensitive, the (wireless) pencil offers
five degrees of freedom. It measures position in the 2D plane, pressure at the tip, and the angle (2 DOF)
relative to the plane. Software such as Adobe Illustrator and Macromedia Freehand works in consort with
this, but still as a physical interface the tablet is not nearly as sensitive as the far more expressive
possibilities of the real brush and paint.

 

System - Audience

 

In the case of an installation work (or a CDROM or web site based work), one could say that the artist
communicates to the audience 

 

displaced in time

 

. An extreme example of this is a CD, where the performer
instead of playing notes directly to the listener records it first. The audience then listens to it at another
time. The artist's actions, intentions and ideas are 

 

built in

 

 the system, therefore the artist is left out of the
interaction diagram below.

Fig. 5. The interaction between audience and installation.

Interaction between the work and the audience can take place in several ways or modalities. Usually a
viewer pushes buttons or controls a mouse to select images on a screen, or the presence of a person in a
room may influence parameters of an installation. The level of interactivity should challenge and engage the
audience, but in practice ranges from straight-forward reactive to confusingly over-interactive.

The picture below on the left shows a prototype of The Global String, an installation by Atau Tanaka and
Kasper Toeplitz which aims to take the interaction quite a bit further away from the computer and the
mouse. A virtual string will be set up through the internet between gallery / performance spaces in Paris
and in Tokyo. The string in the picture is the (prototype of the) real world part of the installation, and forms
the end of the virtual string. This string can be played by performers, coupled to the other end of the string
at the other side of the world. [Tanaka, 1999]
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Fig. 6. Two examples of installation work.

The picture on the right shows part of the interior of the Water Pavilion in Zeeland, NL. This is an
interactive building, designed by architects Kas Oosterhuis and Lars Spuybroek (the part shown in the
picture). The audience can interact with the architecture by pushing against walls, entering hotspots,
pulling ropes and other ways. Sounds will change (also position) and projections (such as the grid visible in
the picture) change as if they were directly touched by the audience [Schwartz, 1997].

Another example is the electronic coffee-table book with built-in sensors I made for a research group at
the University of Amsterdam. This book plays music continuously (a rather annoyingly melody through a
little microchip as used in wishing cards), except when placed on the shelf or read up side down. When
turning to page 105, the music stops so that the audience can read a poem (about accessibility) [de Jong,
1991]. 

 

Performer - System - Audience

 

Real interaction is a living two-way process of giving, receiving and giving back. In a traditional
performance set up the audience is passive, the performer active. The increasing use of "audience
participation" in a traditional concert setting acknowledges the need but does not address the issue in any
depth - typically the situation created is one of "reaction" not "interaction".  A situation can be created
where the audience and performer meet, each influencing the other, as if conversing, while maintaining the
quality of the performance at a high level.

In (musical) performance, there can be two active parties: the performer(s) and the audience. The
audience can (and often does) participate by (even subtle and non-verbal) communication directly to the
performer(s), which may influence the performance. Apart from this direct interaction between the parties,
performer and audience can communicate with each other through the system. The system may facilitate
new interaction channels, and this is the subject of this paragraph. The two kinds of interaction with an
electronic system as distinguished in the previous paragraphs (the interaction between the performer and
the system, and the interaction between the audience and the work performed through the system) can take
place at the same time through one system. The performer communicates to the audience through the
system, and the audience communicates with the performer by interacting with the system.

The diagram in the figure below shows the possible communications, both the interaction through the
system as well as direct interaction in the real world (the large arrow below in the diagram).
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Fig. 7. The interactions between performer, system and audience.

An example of this is The Interactorium (described in more detail in another paper [Bongers, 1999]), a
project which will research these issues and aims to be presented at the Nerve festival at the ICA (Institute
for Contemporary Art) in London in October 2000. The project described here is undertaken in conjunction
with performer, composer, and inventor of the Chromasone instrument Walter Fabeck,

 

 

 

and visual artist
and composer Yolande Harris from England. The Chromasone is an electronic musical instrument, a
gestural controller based on a pair of datagloves and a keyboard-like template. The figure below shows
Fabeck and his instrument, which is further described in an article [Young, 1997] and on the web site
[Fabeck, 1999]

Fig. 8. The Chromasone (left) and the Interaction Chair (right).

The audience will be experiencing not only sound and visuals, but also tactual experiences through
active cushions in their chairs. To provide the audience with ways to directly interact with the system, their
chairs will also be equipped with sensors. The picture above shows a prototype of the Interaction Chair,
with the cushion and a close up of the pressure sensor.

The actions of the audience will be displayed visually by a data-projector, and the images are interpreted
by the performer. This way of audience participation, including the translation of the images to musical
performance parameters is under exploration in the project. 
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Conclusion

 

In this chapter I have described the interaction between performer and instrument, the interaction
between an audience and an installation, and mentioned the possibilities of work that combines these two
interactions. The use of electronic media offers many possibilities for new ways of interaction, both in
regarding modalities as well as activating parties previously playing a passive role. Further studies are
needed to investigate how an audience experiences the interaction, as well as experimenting with new
technologies.

The next chapter aims to take this theory to practice by describing sensing technologies. 

 

Sensors

 

Sensors are the sense organs of a machine. Sensors convert physical energy (from the outside world)
into electricity (into the machine world). There are sensors available for all known physical quantities,
including the ones humans use and often with a greater range. For instance, ultrasound frequencies
(typically 40 kHz used for motion tracking) or lightwaves in the ultraviolet frequency range.

Sensors are available to convert energy quantities like:

• kinetic (incl. pressure, torque, inertia);

• light;

• sound;

• temperature;

• smell;

• humidity;

• electricity;

• magnetism;

• electro-magnetism (radio waves).
Rather than summing up all these sensors categorised by the physical energy they measure, as is

common in technical literature [Sinclair, 1988], [Horowitz & Hill, 1980] this chapter describe sensors based
on the ways humans have to change the state of the world. These so called output modalities (as described
earlier) are mainly related to muscle actions, resulting in for instance movement, air flow or sound. In this
chapter, sensors are described which can be used to build a device that interfaces between a human and a
machine (computer, electronic sound source etc.) illustrated with practical examples of instruments built
by the author.

The following categorisation can be used, which takes the human output modalities as a starting point
(with musical instruments in mind):

• muscle action (isometric / isotonic);

• blowing;

• voice;

• other: Bio-electricity, temperature, blood pressure, heart rate etc.
Blowing air and outputting sound by the voice are strictly speaking also the result of muscle action, but

there are reasons for describing them separately. The "other" category contains changes in the state of the
body, some of which are not under voluntary control but they can be very interesting. At the moment, in
this chapter only the first category is described.

 

Muscle Action

 

Forces exist in two forms: dynamic and static e.g., movement and pressure (isometric force). This can
have several degrees-of-freedom, referring to the position and orientation of an object in three-dimensional
space. 

Movements can be measured without contact (for instance with a camera) or with a mechanical linkage
(with a potmeter for instance). A complex, multiple degree-of-freedom movement (as most movements
are!) is often decomposed and limited by mechanical constructions.
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In the diagram below a categorisation or 

 

taxonomy

 

 is shown which gives the various kinds of
movements their place, from left to right. A movements starts with human 

 

muscle action

 

, and is then
distinguished into 

 

isometric

 

 (no movement, just pressure of pushing against something) or 

 

movement

 

(when there is displacement). In the latter case, the movement can be sensed through 

 

mechanical contact

 

,
or free moving 

 

contactless

 

 measurement

Degrees of freedom (DOF's) is the term used to describe the position and the orientation of an object in
space. There are three degrees of freedom to mark the 

 

position

 

 on the x, y and z axys of the three-
dimensional space, and three degrees of freedom which describe the 

 

rotation

 

 along these axes. The terms

usually used to describe the rotations, come from the robotics field

 

3

 

, where 

 

pitch

 

 means rotation around the
x-axis, 

 

yaw

 

 rotation around the y-axis and 

 

roll

 

 rotation to the z-axis. 
The figure below shows the six degrees of freedom in the three-dimensional space.

Fig. 9. The six degrees of freedom in the three-dimensional space.

The next sections are organised in such a way that they follow the elements as outlined in the taxonomy,
and the movements are further discerned in linear (the DOF's related to position) and rotational (the DOF's
related to orientation).

 

3.  The terms are also common in avionics.
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Isometric

 

Pressure sensors

 

These sensors measure pressure, for instance of a finger pressing on the sensor when there is no
movement involved (and therefore called isometric).

A very common pressure sensor is the Interlink sensor, which is based on conductive ink technology.
The picture below on the left show some of the shapes available, and on the right hand a small size applied
on the Meta-trumpet of Jonathan Impett [Impett, 1994]. They are attached to the front valve, where the left
hand index and middle fingers naturally rest.

Fig. 10. Interlink sensors.

The Interlink sensors are available in many shapes and sizes, also available sensing direction (in 1 or 2
dimensions and still including the third -isometric- dimension: pressure in the Z-direction) but these are
described under the movement sensors.

These pressure sensors were also used in the 'Step' and 'Touch' sensors for the Water Pavilion as shown
below. The pictures show (from left to right) the sensor frame, the inside with the actual sensor outlined,
the final look (a yellow blob sticking out of the wall or floor) and the projection overlay which is influenced
by pressing the object.

Fig. 11. Sensors for the Water Pavilion.
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The electrical resistance of the sensors is infinite when no force is applied. When a force of a few grams
is applied (a light touch of the fingertip) the resistance of the sensor starts to drop, from about 1MΩ to
about 5kΩ when the full force of 20 kilograms is applied, a good range for hand pressure. For the sensors in
the Water Pavilion which measure the full weight of a human body (around 80 kg.) a mechanical linkage
was constructed with the rubber blocs (visible in the picture that shows the inside) to divert part of the
force.

Another manufacturer of pressure sensors is Tekscan who make the FlexiForce sensors [Malacaria,
1998], as shown below.

Fig. 12. FlexiForce sensors.

A cheap way of building pressure sensors is to use the black foam that is used to ship IC's in. This foam
conducts electricity (to avoid static charges) and the resistance changes when compressed. Copper foil
attached to both sides can be used to solder the leads to.

The part that senses aftertouch in a Yamaha DX7 synthesizer is based on this principle. It is a long and
very flat strip, placed under the keys. It was often used as a touch sensor in electronic instruments, such as
The Hands of Michel Waisvisz [1999] and the MIDI conductor [Bongers, 1994]. On these instruments the
sensor was placed under the left hand thumb.

An isometric joystick (such as the little red pimple found on IBM notebook computers, the TrackPoint),
measures two rotational degrees of freedom. The Sentograph, as used by Tamas Ungvary and Roel
Vertegaal for musical applications, measures finger pressure applied to it in 3 degrees of freedom
[Vertegaal and Ungvary, 1995]. It is based on the 2D pressure sensor of Manfred Clynes, which he used for
research in human emotions [Ungvary and Vertegaal, 2000].

The SpaceOrb is a game controller with a ball slightly smaller than a tennis ball, which measures
isometric pressure applied to it in all six degrees of freedom. It's cheaply available and interfaces directly
with the serial port of a PC or Macintosh.

 

Switches

 

Following the terminology as described above, little button switches can be seen as pressure sensors too
but with two discrete values (on/off) instead of continuous measurement. The picture below, on the left,
shows some switches commonly used in instruments.

Fig. 13. Switches (left) and Clavette microtonal keyboard (right).

The picture on the right shows an application in the Clavette microtonal keyboard with 122 switches
(each mapped to a pitch) built in 1994 at Sonology for Harold Fortuin [1999]
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Movement

 

The acquisition of gestural data from a human performer is done with movement sensors, and as
mentioned in the beginning of the chapter this can be categorised by whether there is a mechanical contact
or not. Free moving, contactless sensing uses motion tracking sensors or cameras (with software such as
STEIM's BigEye), which is not further described in this chapter. 

Measuring the displacement through a mechanical contact requires the user to touch the sensing object.
Both catagories are described in the next paragraphs, the sensors are again grouped by their degrees of
freedom.

 

Rotation: Rotary pots, rotary encoders and goniometers

 

The potmeter is probably the most common sensor, this is the element that can be found behind the
turning knobs of almost any electronic device. It rotates about 270° (but other angles exist, up to 360°), and
changes electrical

 

 

 

resistance. They are available in many shapes and sizes, almost any value of resistance.
There are two main types: linear and logarithmic, referring to the curve of resistance change. Logarithmic
pots are used for volume control in amplifiers, because our ears work logarithmically (ten times as much
energy is perceived as two times as loud). Sometimes the logarithmic curve can be useful when measuring
movements, to measure precisely the fine movements with the same sensor that measures gross
movements less precise but often one may prefer to do this in software for greater flexibility. Potmeters are
often applied in pitch bend wheels on commercial synthesisers.

Another type of rotational sensor is the rotary encoder which turns continuously, and outputs a
sequence of digital pulses. An example of this can be found in the mouse, in the little wheels that track the
movement (rolling) of the ball.

Because this type of sensor actually measures the change in 

 

angle

 

, they are also called goniometers.

 

Rotation: Joysticks

 

A joystick is a device that, through mechanical linkage, divides a movement into two rotational degrees
of freedom which are then tracked by individual potmeters. Usually, when held in the hand as in an
aeroplane (or game simulation of that) it measures pitch and roll, but measurement of the rotation around
the y-axis (yaw) is also possible. 

Because the hands are often already in use when playing an instrument or interacting with a system, the
movement of the 

 

feet

 

 can be tracked as well. An example is the 3-DOF foot joystick, which measures three
rotational degrees of freedom of foot movement. It was originally built at Sonology for Harold Fortuin
[1999], and its movement is shown in the movie below.

Fig. 14. Video available in the original CD-Rom version Video excerpt. 3-DOF foot
joystick.

In the pivot points potmeters are built in which measure the rotation around each axis. The pedals have
adjustable stoppers to change the range of the movement, adjustable friction, and can be adjusted for foot
size.
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Linear movement: Slide pots

 

The slide potentiometer can be found for instance in mixing desks. Travel ranges from a few millimetres
to sixteen centimetres for normal commercial types. Like the rotary pots, the sliders are available as linear
and logarithmic types, and various resistance values.

Fig. 15. Slide potmeters (left) and a pulling sensor.

In the picture on the left two small slide potmeters are shown. The picture on the right shows a bigger
slider, a professional audio fader applied in a mechanical construction to create a pulling sensor. This one
was measuring people bouncing on a big trampoline. 

An even bigger version of this sensor was used as tension sensors for the Soundnet [Sensorband, 1999],
[Bongers, 1998b].The picture on the right below show a picture of the members of Sensorband 'playing' the
Soundnet, the picture on the left shows a detail of the sensor which is about 35 centimetres long and has an
adjustable force range from 50 to 200 kilos.

Fig. 16. Soundnet performance and a tension sensor.

A similar sensor was used to measure differences in tension of the 

 

Deep Surface

 

 exhibition of Lars
Spuybroek [1999], in a curved projection surface spanning the space. Each of the two sensors was
connected to an oscillator and amplifier, all built together in one unit as can be seen in the pictures below
(also showing the architectural drawings of the space).
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Fig. 17. Pictures from the 

 

Deep Surface

 

 exhibition.

 

Linear movement: pads and ribbons

 

These are in fact pressure sensors (see above) which sense direction as well, and therefore described
here. Trackpads devices as found in laptop computers (invented as a more cost effective and less space
consuming alternative for the trackball) are a common example of this. 

Two technologies are used to sense the movement of the finger: capacitive and resistive. The trackpad as
found in the Apple PowerBooks is based on capacitive sensing.  Under the surface there are two layers of
fine electrical conductors, arranged in a grid, which create a surface electrical field. Due to the electrical
conductivity of the human body, the fingertip distorts the electrical field at that spot, which is detected by
scanning the grid. That's why they don't sense the movement of other objects than human.

The touchpad made by Interlink (the VersaPad or OEM parts, [Interlink, 1999]) operates with resistive
(semiconductive) technology, and measures the position of a force applied to the surface. It is also touch
sensitive (e.g. in the Z direction, isometric), and responds to other objects.

 

Linear movement: Drawing tablets 

Tablets are flat surfaces, ranging in size roughly from A5 to A3. The user can control the cursor by
moving a special stylus across the surface. Several technologies are used, mostly electromagnetic. Either the
tablet or the pen operates as a transmitter coil, the signal being picked up by the receiver coil. In the older
types, the pen was connected to the system with a wire but modern versions are untethered. Wacom for
instance uses transponder technology: the pad transmits a (electromagnetic) pulse, forcing the pen to
respond with a signal yielding the pen's position. The keys on the pencil are read in the same way (it
changes the characteristics of the coil, which can be detected), as well as the orientation of the pen: holding
it upside down activates an eraser mode. It is touch sensitive, and even the angle under which the stylus is
held is detected (on two axes). Because of all these degrees of freedom this is a very sensitive tool for
drawing artists. A good description of the technology can be found in an article in Byte [Ward and Schultz,
1993]

The musical application of tablets is described in a paper by Matt Wright [1997] [Editors’ note: see the
article by Dudas and Serafin in this volume].

Rotational: Bending

Bend sensors are useful to measure the bending (or abduction) of fingers. This is tracking the rotational
movement of the joints of the fingers.

The most used bending sensor is the one in the picture below, also called the flex sensor. It's a flexible
strip of plastic with conductive ink technology which changes resistance when bent (from 10 k when flat to
40 k when bent at 90°). 

The sensors were originally developed by a company called AGE (Abrams / Gentile Entertainment in
New York) for the Mattel PowerGlove [Gold, 1992], and for a long time the easiest way to get these sensors
was to get the glove and remove the sensors. They are still a bit difficult to get, but Images Company sells
them through the Web [Images Co., 1999] for ten dollars. 
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Fig. 18. Bend sensor.

These sensors are used in the Lady's Glove built in 1994 for Laetitia Sonami. The sensors are
encapsulated in shrink wrap for protection, as can be seen in the picture below (the left one, with blue
shrink wrap). On the wrist a double sensor is used, two sensors are shrink wrapped back to back to measure
two directions of bending. 

Fig. 19. Lady's Glove (left) and Walter Fabeck’s glove (right).

The glove originally built for Walter Fabeck at Sonology has the sensors sewn straight onto the outside of
a glove, in such a way that the sensors can slide when the fingers bend. The gloves used are actually golf
gloves (summer play) which appear very suitable for this purpose. The picture above on the right shows the
glove with the sensors.

For the Laser Bass instrument for Florentijn Boddendijk at Sonology, this sensor was used to measure
the bending of the middle finger, sliding through brass rings.

Fig. 20. Bend sensor for the Laser Bass, and glove built for Wart Wamsteker.
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Pressure sensors, such as the Interlink sensors described earlier, can also be used as bend sensor
because bending the material results in an increase of pressure in the sensitive area. The glove built for
Wart Wamsteker at Sonology, to replace his worn out customised PowerGlove after about three years of
intense usage, uses long strips of Interlink pressure sensors. In this case, the winter play model of the golf
glove was used because the sensors slide conveniently between the outer fabric and thermally insulating
inner part. The picture above on the right shows this glove.

Another way of sensing bending is to use optical fibre, which degrades the amount of light that it lets
through when the fibre is bent. This can be measured and is then related to the amount of bending. The
original Dataglove by VPL [Zimmerman et al, 1987], [Foley 1987] uses this technique, but the disadvantage
is that it can be quite expensive. The technique works best with low quality fibre like the plastic ones, or
fibres which have specially for this purpose damaged cladding. 

Contactless measurement

A popular and cheap method of motion tracking is with ultrasonic sound (above the range of human
hearing, i.e.  > 20 kHz, typically 40 kHz). The system transmits an ultrasonic sound burst through an
ultrasonic transducer (the speaker), usually a pulse train of about 10 square waves, and measures the time
elapsed until the burst is received by another ultrasound transducer (the microphone). The delay time is
proportional with the distance, this method is therefore known as time-of-flight tracking. The ultrasound
system of the Mattel PowerGlove works this way, an L-shaped strip containing the receivers is put around
the monitor and with the two transmitters on the glove the system is able to measure position in 3D space
and rotation around the z-axis (roll) [Gold, 1992]. 

The picture below shows some of the ultrasound transducers, most of them are manufactured by
Murata.

Fig. 21. Some examples of ultrasound transducers.

This technique is also used in gloves and The Hands, where the distance between the hands is measured
by having the transmitter in one hand and the receiver in the other. The STEIM SensorLab [Cost, 1992] has
built-in circuitry and software to use this technology on three separate channels, and needs only one
(simple) circuit on the receiver side. The Sonology MicroLab [van den Broek, 1999] has one channel of
ultrasound distance measurement built in, without the need of additional hardware.

The pictures below show the right hand (rings with the transmitter) and the left hand (with the receiver)
of a smaller version of the Hands built at Sonology in 1993 for Stefan Bezoen.
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Fig. 22. The left and right hands parts of the MiniHands.

It is also possible to detect reflection of the sound, the well known Polaroid cameras operate on this
principle. This may be less accurate because it is dependent on the reflective properties of the surface, but
the detected object can be passive and therefore doesn't need a wired connection to the system. The
polaroid transducer (in fact a speaker and microphone in one) works on an electrostatic principle as
opposed to piezo and can operate on different frequencies (typ. 200 kHz). 

Another way of achieving a wireless link is by transmitting a trigger pulse (which has to be synchronous)
from the system via a radio signal or infrared link. The latter method is used to track movements of dancers
in the DanceWeb installation [Camurri, 1996]. The transmitter and receiver need a line of sight connection,
both the ultrasound and the infrared signals, which can be a disadvantage on the stage. 

The Israelian company Pegasus manufactures a very cheap ultrasonic tracking system, called the FreeD
system (formerly known as the Owl) [Pegasus, 1999]. The tiny transmitter unit can be worn on the finger
and includes also two buttons. It is wireless, the switches emit infrared (RC5-like) signals and the
ultrasound speaker is continuously emitting pulses. The pulses are picked up by three receivers in an L-
shaped unit that fits on the computer monitor, and by two ASIC chips the signal processing and
triangulation calculations are done in order to measure the position in 3D space. The working area is up to
90 cm, and the accuracy is 0,2 mm. It connects to the serial port of a PC, and costs about $80.

All these ultrasound systems remain crude compared to the sonar system of the average bat, however
[Suga, 1990]. Bats emit ('shout') both constant frequencies and FM modulated frequencies, and by
analysing the echoes in a special developed part of their auditory cortex they can detect position, angle and
speed (by Doppler shifts) of objects. Future improvements in machine ultrasound tracking may therefore
be expected.

Linear: magnetic field sensors

There are many ways to measure a magnetic field, the most common example is the pick up coil of an
electric guitar. For sensing purposes however, the so called Hall effect sensor is the most useful one because
it also measures slow changes in magnetic field (down to DC, unlike the coil which can only pick up AC
signals). The name Hall-effect refers to the physics process of bending the flow of electrons through a
semiconductor, perpendicular to the magnetic field lines. This bending of the flow results in a displacement
of electron concentrations and therefore a voltage difference. The effect was named after the physicist
Edwin H. Hall. It is related to the Gauss effect, which is the change in resistance due to the electron
displacement, there are also sensors available based in this effect (Philips KTY series). 

A nice and easy to use little sensor is the Allegro (formerly known as Sprague) UGN-3505 that operates
off a 5 volts supply power, and delivers an output voltage range of about 2 volts around the neutral point of
2.5 volts. Depending on the direction of the magnetic field applied the output voltage will raise from 2.5 to
3.5 volts, or go down from 2.5 volts to 1.5 volts.

Fig. 23. Magnetic field sensors.
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They operate with maximum sensitivity when powered by 6 volts. Sensitivity can be doubled by taking a
pair of sensors glued back to back, and then measure the differential voltage between the two outputs. This
can be done in software or in hardware. 

It is recommended to use neodymium magnets, which are very strong and available in many shapes and
sizes. These magnets are also available in an encapsulated version, where a mu-metal shield directs the
magnetic field to one surface of the magnet disc only.

Although the sensor is linear, a trait of a magnetic field is that it decays in strength in a logarithmic way.
Without a compensation for that, measuring movement will be very precise for the first few millimetres and
become less sensitive for further distances (up to 6 centimetres, depending on the magnet used).

This sensing technique using Hall effect is used on the Lady's Glove of Laetitia Sonami. She has four
sensors on the tips of the fingers, and a magnet attached to the thumb as shown in the picture below on the
left.

Fig. 24. Lady’s Glove sensors (left) and Jonathan Impett's metatrumpet’s sensors
(right).

Another application of this sensing technique can be found in Jonathan Impett's metatrumpet [Impett,
1994] to track the movement of the valves, as can be seen in the picture above. The sensors are fixed in the
bottom screws of the valve compartment on a round piece of PCB, and the magnets (encapsulated in mu-
metal) are fixed to the moving part of the valve (not visible here).

The picture below shows the 'bridge' of the Global String instrument, the movement of the string is
detected by Hall effect sensors mounted on the bridge (highlighted in the picture) through magnets
attached to the string.

Fig. 25. The 'bridge' of the Global String instrument.
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The picture below shows the pulling sensors used in The Web instrument devised by Michel Waisvisz
[Krefeld, 1990] and built at Sonology in 1990. The change in string tension results in a movement of the
magnet attached to the end of the string, which is sensed by the fixed Hall-effect sensor. Due to the
logarithmic signal of the sensor, it was very hard to get a linear reading out of this set up.

Fig. 26. Pulling sensors used in The Web.

Rotation: mercury tilt switches

Tilt or inclination sensors are very useful for measuring orientation of (parts of) the body. The most
commonly used ones are glass mercury switches, and use gravity to move a little blob of mercury. Mercury
switches are often designed to work with higher voltages, but some ones have special contacts so they
operate well with the 5 volt range. The movie below shows how the mercury closes the contact by the
movement of the sensor.

Fig. 27. Video available in the original CD-Rom version Video excerpt. Mercury tilt
switch.

The ones used in The Hands are made by the German manufacturer Günther. By using four sensors in
triangular setting (as a pyramid shape) 10 different inclinations can be measured: one neutral position with
all the switches closed, four orientations of roll and pitch, clockwise and anticlockwise rotation, and four
intermediate stages, and one more when the hands are turned upside down when all switches are open.
This configuration has been used in the Hands since they were developed at STEIM in the mid-eighties. The
picture below shows the latest version (the Hands II) I built in 1991, also visible is that to protect the glass
case from breaking (and spilling poisonous mercury) the sensors are built into a soft plastic tube.

Fig. 28. Mercury tilt switches used in The hands II (left) and in a ball built for Ikaros
van Duppen.

The picture above on the right shows another application, a number of these switches were built in a ball
for Ikaros van Duppen at Sonology in 1993, to measure rotations of the object.

To avoid the risks involved in using glass switches it is better to use the sensor manufactured by
Assemtech (CM13R-0) which is a lot smaller and has a metal case. The Assemtech CW1300-1 is a version
without mercury, using a tiny gold plated ball inside which works well too. The picture below (right) shows
a pair of these sensors, to detect two angles. It is part of the sensor experimenting kit I developed for the
Dartington International Summer School in Devon, England [DISS, 1999].

Piston

Neodymium magnetMumetal shield

Hall-effect sensor

Spring
Bolt String
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Fig. 29. A pair of tilt switches.

Assemtech makes a variety of sensors like this which can also be used as shock detector, as found in
pinball machines (hence the phrase "op tilt slaan" in Dutch) and car alarms. 

Inclination sensors also exist in continuous versions (as opposed to the switch action described here),
but these are quite expensive and not very suitable for tracking swift movements. They operate with a small
amount of special fluid in a cavity, the movement of which results in a change of the electric capacity.

Linear: accelerometers

Accelerometers measure acceleration (and deceleration, often a far richer source of information). Most
sensors of this type are quite expensive, due to the high precision required in a common application for
position detection (extracted from the direction and amount of acceleration over time measured) for car
and avionics navigation systems. Nowadays another common application is shock detection in airbag
systems in cars, and cheaper sensors are becoming available. They are little IC's (Integrated Circuits) that
have a microscopic sized mass etched out of the silicon, which is suspended in little pieces of silicon that act
as piezo-resistive sensors. An acceleration of the chip results in a relative movement of the little mass due to
inertia, leading to a little change in voltage on the output.

To develop an accelerometer for musical applications, I used the ICSensors 3031-002 and developed a
circuit around it on a tiny PCB with surface mount components (SMD). The most sensitive version available
(+/- 2g) was found to be the most useful for musical applications, tracking even very slow waves of body
parts. The sensor circuit (shown below, actual size) was developed in 1994 and is used for instance by
Laetitia Sonami on the Lady Glove, by Jonathan Impett on his Meta-trumpet and by Joel Ryan for dance
applications.

Fig. 30. The accelerometer circuit.

The recently introduced chip by Analog Devices, the ADXL105 series, has all the electronics built in, is
still quite cheap and is much easier to use. This sensor is also available for simultaneous measurement of
movement on two axes.

A cheap way of building an accelerometer is using the inner part of a panel meter, essentially a moving
part (the needle) placed in a coil which moves the needle. This process can be reversed, the movement of
the needle (due to inertia) will result in a voltage produced by the coil. This technique was applied in the Air
Drums by Palm Tree Productions [Downes, 1987].

Rotational: gyroscopes

The gyroscope effect can be used for orientation sensing as well. Planes use gyroscopes to fly straight,
mechanical devices that are very expensive again but these days cheap semiconductor versions appear as
well. An example is the Murata ENC05E (or the ENC-05S), a little chip that outputs a voltage swing of a few
volts proportional with the angular (rotational) velocity of the device. It operates on the principle of a
vibrating triangular element, micromachined in silicon in the same way as the accelerometers, and the
(tiny) forces operating on the suspension of the vibrating element when the object is turned (due to inertia)
are translated into a voltage.
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Linear: Photocells

Photocells are often found in every day life, for instance to detect people being caught between elevator
doors. They operate by sending out a beam of light (often infrared) and detecting the obstruction of the
light path, or reflection of the light. Operating distances vary from centimetres to tens of meters, and
industrial rugged types are available. There are three types commonly available:

• A pair of one transmitter and one receiver 

• One unit which is both transmitter and receiver, and detects the light path from a (passive) reflector

• One unit which is both transmitter and receiver, and detects the proximity of an object by the reflec-
tion off that object.

In the Water Pavilion interactive building the position of the audience was sensed with the latter type, of
industrial water proof quality.

A small and quite useful sensor is the Honeywell HOA1397, containing a light transmitter and receiver
and works very well as a (continuous) proximity sensor. It is shown in the picture below.

Fig. 31. A proximity sensor.

Without added electronics however it is also sensitive to changes in environmental light. In an enclosed
space this is not a problem, and can then be used as a movement detector. An example of this is an
interaction object in the Salt Water Pavilion, sensing rotational movements of a board manipulated by the
audience. The board was mounted on a big rubber bloc which enabled it to move with three rotational
degrees of freedom. The pictures below show (from left to right) the prototype of the board in the workshop,
the final version (orange oval) as part of the sculpture (by Ilona Lénárd) manipulating the projections, the
inside of the final version with four of the six HOA1397 sensors indicated (there were two for each degree of
freedom to double the working range), and the foam outer walls of the unit.

Fig. 32. The interaction board in the Water Pavilion.
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Linear: Photoresistors

Photoresistors are useful for detecting light changes, for instance in installations or movement sensing.
The picture below on the left shows such an application, the movement of the leaf was sensed by a
photoresistor in the interactive tree project by Dan Livingstone at the Dartington Summer Music School in
1999.

The picture on the right shows the LaserBass instrument, built for Sonologist Florentijn Boddendijk in
1994. It uses a photoresistor (in the circle on the ground) to detect the interception of a laser beam by the
hand, played by Florentijn as shown on the picture. The circle on the top highlights the position of the laser
diode (and the ultrasound receiver used for measurement of the vertical movement), an industrial diode
laser but a laser pointer can be used as well.

Fig. 33. Florentijn Boddendijk playing the LaserBass (left), and a leaf being sensed.

Conclusion

With the work described in this paper, it is hoped that ideas for new instruments, installations and
interactions in electronic arts are evoked. With the practical information supplied it is possible to build at
least protoytpes to try out ideas, even for people without a background in electrical engineering. Most of the
techniques and sensor parts are cheaply available and easy to use. 

In the Interactive Electronic Music workshops at the Dartington Summer School in Devon, England
participants unanimously agreed that being able to build their own instruments, from soldering to software
programming, improved their understanding of the idiom.

As I mentioned in the introduction, this paper is a work in progress and I do intend to keep updating and
expanding it. I therefore welcome all suggestions and comments, including severe criticism! The taxonomy
or categorisation of sensors as presented in the beginning of the previous chapter is intended as a
framework to fill in with knowledge acquired.
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