
Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

De Re Atari



Preface
Introduction

by enter value here

This manual is about the ATARI Home Computer. It covers both the ATARI 400TM
and the ATARI 800TM Computers. These two computers are electrically identical,
differing only in mechanical features such as the keyboards and cartridge slots. The
purpose of this manual is to explain in detail how to use all the features of the
ATARI Computer. Because this is a complex and powerful machine, the
explanations are accordingly rather long. Furthermore, they demand some expert
Expertise on the part of the reader. This book is not intended for the beginning
programmer. The reader should be thoroughly familiar with the BASIC Reference
Manual, which is provided with the computer. Familiarity with assembly language is
also essential. A glossary in the back defines and explains some of the less
commonly encountered jargon. However, this glossary does not include terms that
every serious personal computer programmer should already know.

Written as a training manual for professional programmers who use the ATARI
Home Computer, this book may be modified for general use at some later date. It
does not supplant the technical reference manual (ATARI part number C016555),
which is a reference for programmers who already understand the system. This
book is intended to be a tutorial that explains ideas and possibilities rather than
defining registers and control codes.

The title, DE RE ATARI, is pronounced "Day Ray Atari". It is an obscure literary
reference. Some Latin manuscripts in Roman and medieval times were entitled "De
Re This" or "De Re That". Thus, "De Re Rustica" was a poem on farming and "De
Re Metallica" described metallurgy. Loosely translated, "De Re" means "All About".

Most of the word processing for the book was carried out with Atari computers. A
source file editor was used for text editing, and a modified version of FORMS
(available from the Atari Program Exchange) was used to format and print the text.
A letter-quality printer was used for output. Some sections were developed with a
conventional word processor.

The Software Development Support Group wrote this book. Chris Crawford wrote
Sections 1 through 6 and Appendices A and B. Lane Winner wrote Section 10 and
Appendix D with assistance from Jim Cox. Amy Chen wrote Appendix C. Jim
Dunion wrote Sections 8 and 9. Kathleen Pitta wrote Appendix E. Bob Fraser wrote
Section 7. Gus Makreas prepared the Glossary. The final result has many flaws, but
we are proud of it.



IContent

I

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Content

Chapter I System Overview 3

Chapter II Antic and the display list 7

Chapter III Graphics indirection 15

Chapter IV Player-Missile graphics 22

Chapter V Display list interrupts 31

Chapter VI Scrolling 39

Chapter VII Sound 45

Chapter VIII The Operating System 63

Chapter IX The Disk Operating System 99

Chapter X Atari Basic 110

Chapter XI Appendix A. Memory utilization 124

Chapter XII Appendix B. Human engineering 127

Chapter XIII Appendix C. The Atari Cassette 138

Chapter XIVAppendix D. Television Artifacts 153

Chapter XV Appendix E. GTIA 156

Chapter XVIGlossary 161

Index 0



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

System
Overview

Chapter

I



3System Overview

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

1 System Overview

The ATARI Home Computer is a second-generation personal computer. First and foremost, it is a
consumer computer. The thrust of the design is to make the consumer comfortable with the
computer. This consumer orientation manifests itself in many ways. First, the machine is proofed
against consumer mistakes stakes by such things as polarized connectors that will not go in the
wrong way, a power interlock on the lid to the internal electronics, and a pair of plastic shields
protecting the SYSTEM RESET key. Second, the machine has a great deal of graphics power;
people respond to pictures much more readily than to text. Third, the machine has strong sound
capabilities. Again, people respond to direct sensory input better than to indirect textual messages.
Finally, the computer has joysticks and paddles for more direct tactile input than is possible with
keyboards. The point here is not that the computer has lots of features but rather that the features
are all part of a consistent design philosophy aimed directly at the consumer. The designer who
does not appreciate this fundamental fact will find himself working against the grain of the system.

The internal layout of the ATARI 400/800Tm Computer is very different from other systems. It of
course has a microprocessor (a 6502), RAM, ROM, and a (PIA). However, it also has three
special- purpose (LSI) chips known as ANTIC, CTIA, and POKEY. These chips were designed by
Atari engineers primarily to take much of the burden of housekeeping off of the 6502, thereby
freeing the 6502 to concentrate on computations. While they were at it, they designed a great deal
of power into these chips. Each of these chips is almost as big (in terms of silicon area) as a 6502,
so the three of them together provide a tremendous amount of power. Mastering the ATARI
400/800 Computers is primarily a matter of mastering these three chips.

ANTIC is a microprocessor dedicated to the television display. It is a true microprocessor; it has an
instruction set, a program (called the display list), and data. The display list and the display data
are written into RAM by the 6502. ANTIC retrieves this information from RAM using direct memory
access (DMA). It processes the higher level instructions in the display list and translates these
instructions into a real-time stream of simple instructions to CTIA.

CTIA is a television interface chip. ANTIC directly controls most of CTIA's operations, but the 6502
can be programmed to intercede and control some or all of CTIA's functions. CTIA converts the
digital commands from ANTIC (or the 6502) into the signal that goes to the television. CTIA also
adds some factors of its own, such as colour values, player-missile graphics, and col- lision
detection.

POKEY is a digital input/output (I/O) chip. It handles such disparate tasks as the serial I/O bus,
audio generation, keyboard scan, and random number generation. It also digitizes the resistive
paddle inputs and controls maskable interrupt (IRQ) requests from peripherals.

All four of these LSI chips function simultaneously. Careful separation of their functions in the
design phase has minimized conflicts between the chips. The only hardware level conflict between
any two chips in the system occurs when ANTIC needs to use the address and data buses to fetch
its display information. To do this, it halts the 6502 and takes control of the buses.

As with all 6502 systems, the I/O is memory-mapped. Figure 1-1 presents the coarse memory map
for the computer. Figure 1-2 shows the hardware arrangement.



4 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 1-1 Atari Memory Arrangement



5System Overview

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 1-2 Atari Hardware Arrangement



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Antic and the
display list

Chapter

II



7Antic and the display list

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

2 Antic and the display list

TELEVISION DISPLAYS
To understand the graphics capabilities of the ATARI Home Computer, one must first understand
the rudiments of how a television set works. Television sets use what is called a raster scan
display system. An electron beam is generated at the rear of the television tube and shot toward
the television screen. Along the way, it passes between sets of horizontal and vertical coils which,
if energized, can deflect the beam. In this way the beam can be made to strike any point on the
screen. The electronics inside the television set cause the beam to sweep across the television
screen in a regular fashion. The beam's intensity can also be controlled. If you make the beam
more intense, the spot in the screen that it strikes will glow brightly; if you make it less intense, the
spot will glow dimly or not at all

The beam starts at the top-left corner of the screen and traces horizontally across the screen. As it
sweeps across the screen, its changes in intensity paint an image on the screen. When it reaches
the right edge of the screen, it is turned off and brought back to the left side of the screen. At the
same time it is moved down just a notch. It then turns back on and sweeps across the screen
agate. This process is repeated for a total of 262 sweeps across the screen. (There are actually
525 sweeps across the screen in an alternating system known as "interlace." We will ignore
interlace and act as if the television has only 262 lines.) These 262 lines fill the screen from top to
bottom. At the bottom of the screen (after the 262nd line is drawn), the electron beam is turned off
and returned to the upper left corner of the screen. Then it starts the cycle all over agate. This
entire cycle happens 60 times every second.

Now for some Jargon: a single trace of the beam across the screen is called a "horizontal scan
line." A horizontal scan line is the fundamental unit of measurement of vertical distance on the
screen. You state the height of an image by specifying the number of horizontal scan lines it
spans. The period during which the beam returns from the right edge to the left edge is called the
"horizontal blank." The period during which the beam returns to the top of the screen is called the
"vertical blank." The entire process of drawing a screen takes 16,684 microseconds. The vertical
blank period is about 1400 microseconds. The horizontal blank takes 14 microseconds. A single
horizontal line takes 64 microseconds.

Most television sets are designed with "overscan"; that means they spread the image out so the
picture edges are off the edge of the television tube. This guarantees that you have no unsightly
borders in your television picture. It is very bad for computers, though, because screen information
that is off the edge of the picture does you no good. For tints reason the picture that the computer
puts out must be somewhat smaller than the television can theoretically display. Therefore, only
192 horizontal scan lines are normally used by the ATARI display. Thus, the normal limit of
resolution of a television set used with this computer is 192 pixels vertically.

The standard unit of horizontal distance is the "color clock." You specify the width of an image by
stating how many color clocks wide it Is. There are 228 color clocks in a single horizontal scan line,
of which a maximum of 176 are actually visible. Thus, the ultimate limit for full-color horizontal
resolution with a standard color television is 176 pixels. It is possible with the ATARI Home
Computer System to go even finer and control individual half- clocks. This gives a horizontal
resolution ton of 352 pixels. However, use of tints feature will produce interesting color effects
known as color artifacts. Color artifacts can be a nuisance if they are not desired; they can be a
boon to the programmer who desires additional color and is not fazed by their restrictions.

COMPUTERS AND TELEVISIONS
The fundamental problem any microcomputer has In using a raster scan television for display
purposes is that the television display is a dynamic process; because of this, the television does
not remember the image. Consequently, the computer must remember the screen Image and
constantly send a signal to the television telling it what to display. This process of sending in format
ton to the television is a continuous process and it requires full-time attention For tints reason most
microcomputers have special hardware circuits that handle the television The basic arrangement
is the same on virtually all systems:

            microprocessor-->screen RAM--->video hardware--->TV screen



8 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The microprocessor writes information to the screen RAM area that holds the screen data. The
video hardware is constantly dipping into this RAM area, gettting screen data that it converts into
television signals These signals go to the television which then displays the information. The
screen memory is mapped onto the screen in the same order that it follows in RAM. That is, the
first byte in the screen memory maps to the top-left corner of the screen, the second byte maps
one position to the right, then the third, the fourth, and so on to the last byte which is mapped to
the lower right corner of the screen.

The quality of the Image that gets to the screen depends on two factors: the quality of the video
hardware, and the quantity of screen RAM used for the display The simplest arrangement is that
used by TRS- 80 and PET. (TRS-80) is a trademark of Radio Shack Co; PET is a trademark of
Commodore Business Machines.) Both of these machines allocate a specific 1K of RAM as
screen memory. The video hardware circuits imply pull data out of tints area, Interpret it as
characters (using a character set in ROM), and put the resulting characters onto the screen. Each
byte represents one character, allowing a choice of 256 different characters in the character set.
With 1K of screen RAM, one thousand characters can be displayed on the screen. There isn't
much that can be done with tints arrangement. The Apple uses more advanced video hardware.
(Apple is a trademark of Apple Computers.) Three graphics modes are provided: text, lo-
resolutton graphics, and hi- resolution graphics. The text graphics mode operates in much the
same way that the PET and TRS-80 displays operate. In the low-resolution graphics mode, the
video hardware reaches into screen memory and interprets it differently. Instead of interpreting
each byte as a character, each byte is interpreted as a pair of color nibbles. The value of each
nibble specifies the color of a single pixel. In the high-resolution graphics mode each bit in screen
memory is mapped to a single pixel. If the bit is on, the pixel gets color in It; if the bit is off, the pixel
stays dark. The situation is complicated by a variety of design nuances in the Apple, but that is the
basic idea. The important idea is that the Apple has three display modes; three completely
different ways of interpreting the data in screen memory. The Apple video hardware is smart
enough to interpret a screen memory byte as either an 8-bit character (text mode), two 4-bit color
nybbles (lo-resolution mode), or 7 individual bits for a bit map hi-resolution mode).

ANTIC, A VIDEO MICROPROCESSOR
The ATARI 400/800 display list system represents a generalization of these systems. Where PET
and TRS-80 have one mode and Apple has three modes, the ATARI 400/800 has 14 modes. The
second important difference is that display modes can be mixed on the screen. That is, the user is
not restricted to a choice between a screen ful of text or a screenful of graphics. Any collection of
the 14 graphics. modes can be displayed on the screen. The third important difference is that the
screen RAM can be located anywhere in the address space of the computer and moved around
while the program is running, while the other machines use fixed-screen RAM areas.

All of this generality is made possible by a video microprocessor called ANTIC. Where the earlier
systems used rather simple video circuitry, Atari designed a full-scale microprocessor just to
handle the intricacies of the television display. ANTIC is a true microprocessor; it has an instruction
set, a program, and data. The program for ANTIC is called the display list. The display list specifies
three things: where the screen data may be found, what display modes to use to Interpret the
screen data, and what special display options (if any) should be implemented. When (using the
display list, it is important to shed the old view of a screen as a homogeneous image in a single
mode and see it instead as a stack of "mode lines." A mode line is a collection of horizontal scan
lines. It stretches horizontally all the way across the screen. A Graphics 2 mode line is 16
horizontal scan lines high, while a Graphics 7 mode line is only two scan lines high. Many graphics.
modes available from BASIC are homogeneous; an entire screen of a single mode is set up. Do
not limit your imagination to this pattern; with the display list you can create any sequence of mode
lines down the screen. The display list is a collection of code bytes that specify that sequence.

ANTIC'S instruction set is rather simple. There are four classes of instructions: map mode,
character mode, blank line and jump. Map mode instructions cause ANTIC to display a mode line
with simple colored pixels (no characters). Character mode instructions cause ANTIC to display a
mode line with characters in it. Blank line instructions cause ANTIC to display a number of
horizontal scan lines with solid background color. Jump instructions are analogous to a 6502 JMP
instruction; they reload ANTIC's program counter.

There are also four special options that can sometimes be specified by setting a designated bit in



9Antic and the display list

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

the ANTIC instruction. These options are: display list Interrupt (DLI), load memory scan (LMS),
vertical scroll, and horizontal scroll.

Map mode instructions cause ANTIC to display a mode line containing pixels with solid color in
them. The color displayed comes from a color register. The choice of color register is specified by
the value of the screen data. In four-color map modes (BASIC modes 3, 5, and 7, and ANTIC
modes 8, A, D, and E), a pair of bits is required to specify a color:

            Value of Bit Pair   Color Register Used
                  00 0               COLBAK
                  01 1               COLPFO
                  10 2               COLPF1
                  11 3               COLPF2 

Since only two bits are needed to specify one pixel, 4 pixels are encoded in each screen data byte.
For example, a byte of screen data containing the value $1B would display 4 pixels; the first would
be the background, the second would be color register 0, the third would be color register 1, and
the fourth would be color register 2:

            $1B = 00011011 = 00 01 10 11

In two-color map modes (BASIC modes 4, 6, and 8, and ANTIC modes 9, B. C, and F) each bit
specifies one of two color registers. A bit value of 0 selects background color for the pixel and a bit
value of 1 selects color register 0 for the pixel. Eight pixels can be stored in one screen data byte.

There are eight different map display modes. They differ in the number of colors they display (2 vs
4), the vertical size one mode line occupies (1 scan line 2, 4, or 8), and the number of pixels that fit
horizontally into one mode line (40, 80, 160, or 320). Thus, some map modes give better
resolution; these will of course require more screen RAM. Figure 2-1 presents this information for
all modes.

ANTIC BASIC No. Scan Lines Pixels Bytes Bytes/
Mode Mode Colors Mode Line Mode Line Line Screen
2 0 2 8 40 40 960
3 none 2 10 40 40 760
4 none 4 8 40 40 960
5 none 4 16 40 40 480
6 1 5 8 20 20 480
7 2 5 16 20 20 240
8 3 4 8 40 10 240
9 4 2 4 80 10 480
A 5 4 4 80 20 960
B 6 2 2 160 20 1920
C none 2 1 160 20 3840
D 7 4 2 160 40 3840
E none 4 1 160 40 7680
F 8 2 1 320 40 7680

            Figure 2-1 ANTIC Mode Line Requirements 

Character mode instructions cause ANTIC to display a mode line with characters in it. Each byte in
screen RAM specifies one character. There are six character display modes. Character displays
are discussed in Section

Blank line instructions produce blank lines with solid background color. There are eight blank line
instructions they specify skipping one through eight blank lines

There are two jump instructions. The first (JMP) is a direct jump; it. reloads ANTIC's program
counter with a new address that follows the JMP instruction as an operand. Its only function is to
provide a solution to a tricky problem: ANTIC's program counter has only 10 bits of counter and six
bits of latch and so the display list cannot cross a 1K boundary. If the display list must cross a 1K
boundary then it must use a JMP instruction to hop over the boundary. Note that this means that
display lists are not fully relocatable.



10 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The second jump instruction (JVB) is more commonly used. It reloads the program counter with
the value in the operand and waits for the television to perform a vertical blank. This instruction is
normally used to terminate a display list by jumping back up to the top of the display list Jumping
up to the top of the display list turns it into an infinite loop; waiting for vertical blank ensures that the
infinite loop is synchronized to the display cycle of the television. Both JMP and JVB are 3-byte
instructions the first byte is the opcode, the second and third bytes are the address to jump to (low
then high).

The four special options mentioned previously will be discussed in Sections 5 and 6. The load
memory scan (LMS) option must have a preliminary explanation. This option is selected by setting
bit 6 of a map mode or a character mode instruction byte. When ANTIC encounters such an
instruction, it will load its memory scan counter with the following 2 bytes. This memory scan
counter tells ANTIC where the screen RAM is. It will begin fetching display data from this area. The
LMS instruction is a 3- byte instruction: 1 byte opcode followed by 2 bytes of operand. In simple
display lists the LMS instruction Is used only once, at the beginning of the display list. It may
sometimes be necessary to use a second LMS instruction. The need arises when the screen RAM
area crosses a 4K boundary. The memory scan counter has only 12 bits of counter and 4 bits of
latch; thus, the display data cannot cross a 4K boundary. In this case an LMS instruction must be
used to jump the memory scan counter over the boundary. Note that this means that display data
is not fully relocatable. LMS instructions have wider uses which will be discussed later.

BUILDING DISPLAY LISTS
Every display list should start off with three "blank 8 lines" instructions. This is to defeat vertical
overscan by bringing the beginning of the display 24 scan lines down. After this is done, the first
display line should be specified. Simultaneously, the LMS should be used to tell ANTIC where it will
find the screen RAM. Then follows the display list proper, which lists the display bytes for the mode
lines on the screen. The total number of horizontal scan lines produced by the display list should
always be 192 or less; ANTIC does not maintain the screen timing requirements of the television. If
you give ANTIC too many scan lines to display it will do so, but the television screen will probably
roll. Displaying fewer than 192 scan lines will cause no problems; indeed, it will decrease 6502
execution time by reducing the number of cycles stolen by ANTIC. The programmer must calculate
the sum of the horizontal scan lines produced by the display list and verify it. The display list
terminates with a JVB instruction. Here is a typical display list for a standard BASIC Graphics
mode 0 display (all values are in hexadecimal):

            70 Blank 8 lines
            70 Blank 8 lines
            70 Blank 8 lines
            42 display ANTIC mode 2 (BASIC mode0)
            20 Also, screen memory starts at7C20
            7C
            02 Display Antic Mode 2
            02
            02
            02
            02
            02
            02
            02
            02
            02
            02
            02
            02
            02
            02
            02
            02
            02
            02
            02



11Antic and the display list

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            02
            02
            02
            41 Jump and watt for vertical
            E0 blank to display list which
            7B starts at $7BEO 

As you can see, This display list is short---only 32 bytes. Most display lists are less than 100 bytes
long. Furthermore, they are quite simple in structure and easy to set up.

To implement your own display list you must first design the display format. This is best done on
paper. Lay out the screen image and translate it. into a sequence of mode lines Keep track of the
scan line count of your display by looking up the scan line Requirements of the various modes in
Figure 2-1. Translate the sequence of mode lines into a sequence of ANTIC mode bytes. Put three
"blank 8 lines bytes ($70) at the top of the list Set bit 6 of the first display byte (that is make the
upper nybble a 4). This makes a load memory scan command. Follow with 2 bytes which specify
the address of the screen RAM (low then high). Then follow with the rest of the display bytes. At
the end of your display list put in the JVB instruction ($41) and the address of the top of the display
list Now store all of these bytes into RAM. They can be anywhere you want; just make sure they
don't overlay something else and your JVB points to the top of the display list The display list must
not cross a 1K address boundary. If you absolutely must have it. cross such a boundary, insert a
JMP instruction just in front of the boundary. The JMP instructions's operand is the address of the
first byte on the other side of the boundary. Next you must turn off ANTIC for a fraction of a second
while you rewrite its display list pointer. Do this by writing a 0 into SDMCTL at location $22F. Then
store the address of the new display list into $230 and $231 (low then high). Lastly, turn ANTIC
back on with a $22 into SDMCTL. During the vertical blank, while ANTIC is quiet, the operating
system (OS) will reload ANTIC's program counter with these values.

WRITING TO A CUSTOM DISPLAY LIST SCREEN
Screen memory can be placed anywhere in the address space of the computer. Normally the
display list specifies the beginning of the screen memory with the first display instruction---the
initial LMS instruction However, ANTIC can execute a new LMS instruction with each display line
of the display list if this is desired. In This way information from all over the address space of the
computer can be displayed on a single screen. This can be of value in setting up independent text
windows.

There are several restrictions in your placement of the screen memory. First screen memory
cannot cross a 4K address boundary. If you cannot avoid crossing a 4K boundary (as would be the
case in BASIC mode 8, which uses 8K of RAM) you must reload the memory scan counter with a
new LMS instruction. Second, if you wish to use any of the operating system screen routines you
must abide by the conventions the OS uses. This can be particularly difficult when using a modified
display list in a BASIC program. If you alter a standard display list from a BASIC program and then
attempt to PRINT or PLOT to the screen, the OS will do so under the assumption that the display
list is unchanged. This will probably result in a garbled display

There are three ways the display can fall when you attempt this. First BASIC may refuse to carry
out a screen operation because it is impossible to do in the graphics. mode that the OS thinks it is
in. The OS stores the value of the graphics mode that it thinks is on the screen in address $57.
You can fool the OS into cooperating by poking a different value there. Poke the BASIC mode
number, not the ANTIC mode number.

The second failure you might get arises when you mix mode lines with different screen memory
byte Requirements. Some mode lines require 40 bytes per line some require 20 bytes per line and
some require only 10 bytes per line. Let's say that you insert one 20-byte mode line into a display
list with 40 byte mode lines. Then you PRINT text to the display. Everything above the interloper
line is fine, but below it. the characters are shifted 20 spaces to the right. This is because the OS
assumed that each line would require 40 bytes and positioned the characters accordingly. But
ANTIC, when it encountered the interloper line took only 20 bytes of what the OS thought should
be a 40-byte line ANTIC interpreted the other 20 bytes as belonging to the next line and displayed
them there. This resulted in the next line and all later lines being shifted 20 spaces to the right.



12 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The only absolute way around This problem is to refrain from (using BASIC PRINTs and PLOTs to
output to a custom display list screen. The quick-and-dirty solution is to organize the screen into
line groups that contain integer multiples of the standard byte requirement. That is, do not insert a
20-byte mode line into a 40- byte display instead insert two 20-byte lines or one 20-byte line and
two 10-byte lines So long as you retain the proper integer multiples, the horizontal shift will be
avoided.

This solution accentuates the third problem with indexed display lists and BASIC: vertical shifts.
The OS positions screen material vertically by calculating the number of bytes to skip down from
the top of the screen. In a standard 40-byte line display, BASIC would position the characters onto
the tenth line by skipping 360 bytes from the beginning. If you have inserted four 10-byte lines
BASIC will end up three lines further down the screen than you would otherwise expect.
Furthermore, different mode lines consume different numbers of scan lines, so the position on the
screen will not be quite what you expected if you do not take scan line costs into account.

As you can see, mixed mode displays can be difficult to use in conjunction with the OS. Often you
must fool the OS to make such displays work. To PRINT or PLOT to a mode window, POKE the
BASIC mode number of that window to address $57, then POKE the address of the top left pixel of
the mode window into locations $58 and $59 (low then high). In character modes, execute a
POSITION 0,0 to home the cursor to the top-left corner of the mode window. In map modes, all
PLOTs and DRAWTOs will be made using the top-left corner of the mode window as the origin of
the coordinate system.

The display list system can be used to produce appealing screen displays. Its most obvious use is
for mixing text and graphics. For example, you could prepare a screen with a bold BASIC mode 2
title, a medium size BASIC mode 1 subtitle, and small BASIC mode 0 fine print. You could then
throw in a BASIC mode 8 picture in the middle with some more text at the bottom. A good example
of this technique is provided by the display in the ATARI States and Capitals program.

The aforementioned problems will discourage the extensive use of such techniques from BASIC.
with assembly language routines, modified display lists are best used by organizing the screen into
a series of windows, each window having its own LMS instruction and its own independent RAM
area.

APPLICATIONS OF DISPLAY LISTS
One simple application of display list modifications is to vertically space lines on the screen by
inserting blank line bytes. This will add some vertical spacing which will highlight critical messages
and enhance the readability of some displays.

Another important use of display list manipulations is in providing access to features not available
from BASIC. There are three text modes supported by ANTIC that BASIC does not support. Only
display list manipulations gain the user access to these modes. There are also display list interrupt
and fine scrolling capabilities that are only available after the display list is modified. These
features are the subjects of Sections 5 and 6.

Manipulations with the LMS instruction and its operand offer many possibilities to the creative
programmer. For example, by changing the LMS during vertical blank, the programmer can
alternate screen images. This can be done at slow speed to change between predrawn displays
without having to redraw each one. Each display would continue to reside in (and consume) RAM
even while it. is not in use, but it. would be available almost instantly. This technique can also be
used for animation. By flipping through a sequence of displays cyclic animation can be achieved.
The program to do this would manipulate only 2 address bytes to display many thousands of bytes
of RAM.

It is also possible to superimpose images by flipping screens at high speed. The human eye has a
time resolution; of about 1/16 of a second, so a program can cycle between four images, one
every 1/60 of a second, so that each repeats every 1/15 of a second. In This way, up to four
images can appear to reside simultaneously on the screen. Of course, there are some drawbacks
to This method. first four separate displays may well cost a lot of RAM. Second, each display
image will be washed out because it. only shows up one quarter of the time. This means that the
background of all displays must be black, and each image must be bright. Furthermore, there will



13Antic and the display list

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

be some unpleasant screen flicker when this technique is used. A conservative programmer might
consider cycling between only three or even only two images. This technique can also be used to
extend the color and luminosity resolution; of the computer. By cycling between four versions of
the same image each version stressing one color or luminosity range, a wider range of colors and
luminosities is available. For example, suppose you wish to display a bar of many different
luminances. First set your four color registers to the values:

            Background:  00
            Playfield 1: 02
            Playfield 2: 0A
            Playfield 3: 0C 

Now put the following images into each of the screen RAM areas:

             Pixel Contents (by Playfield Color Register)
            First frame 1   1   1   1   2   3   2   3   2   3   2   3
            Second frame B   1   1   1   B   B   2   3   2   3   2   3
            Third frame B   B   1   1   B   B   B   B   2   3   2   3
            Fourth frame B   B   B   1   B   B   B   B   B   B   2   3
            Effective luminance x4 2   4   6   8   10  12  20  24  30  36 40   48

            Perceived luminance

In this way, much finer luminance resolutions possible.

A final suggestion concerns a subject that is laden with opportunities but little understood as yet:
the dynamic display list This is a display list which the 6502 changes during vertical blank periods.
It should be possible to produce interesting effects with such lists For example, a text editing
program dynamically inserts blank lines above and below the screen line being edited set it. apart
from the other lines of text. As the cursor is moved vertically, the display list is changed. The
technique is odd but very effective.



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Graphics
indirection

Chapter

III



15Graphics indirection

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

3 Graphics indirection

(COLOR REGISTERS AND CHARACTER SETS)
Indirection is a powerful concept in programming. In 6502 assembly language, there are three
levels of indirection in referring to numbers. The first and most direct level is the immediate
addressing mode In which the number itself is directly stated:

            LDA #$F4 

The second level of indirection is reached when the program refers to a memory location that
holds the number:

            LDA $0602 

The third and highest level of indirection with the 6502 is attained when the program refers to a
pair of memory locations which together contain the address of the memory location that holds the
number. In the 6502, this indirection is complicated by the addition of an index:

            LDA ($D0),Y 

Indirection provides a greater degree of generality (and hence power) to the programmer. Instead
of trucking out the same old numbers every time you want to get something done, you can simply
point to them. By changing the pointer, you can change the behaviour of the program. Indirection is
obviously an important capability.

COLOR REGISTERS
Graphics indirection is built into the ATARI Home Computer in two ways: with color registers and
with character sets. Programmers first approaching this computer after programming other
systems often think in terms of direct colors. A color register is a more complex beast than a color.
A color specifies a permanent value. A color register is indirect; it holds any color value. The
difference between the two is analogous to the difference between a box-end wrench and a socket
wrench. The box-end wrench comes in one size only but a socket wrench can hold almost any size
socket. A socket wrench is more flexible but takes a little more skill to use properly. Similarly, a
color register is more flexible than a color but takes more skill to use effectively.

There are nine color registers in the ATARI 400/800 Computer; four are for player- missile
graphics and will be discussed in Section 4. The remaining five are not always used; depending on
the graphics mode used, as few as two registers or as many as five will show up on the screen. In
BASIC mode 0, only two and one-half registers are used because the hue value of the characters
is ignored; characters take the same hue as playfield register 2 but take their luminance from
register 1. The color registers are in CTIA at addresses $D016 through $D01A. They are
"shadowed" from OS RAM locations into CTIA during vertical blank. Figure 3-1 gives color register
shadow and hardware addresses.

Image Controlled Hardware
Label Address

OS Shadow
Label Address

Player 0
Player 1
Player 2
Player 3
Playfield 0
Playfield 1
Playfield 2
Playfield 3
Background

COLPM0 D012
COLPM1 D013
COLPM2 D014
COLPM3 D015
COLPF0 D016
COLPF1 D017
COLPF2 D018
COLPF3 D019
COLBK D0lA

PCOLR0 2C0
PCOLR1 2C1
PCOLR2 2C2
PCOLR3 2C3
COLOR0 2C4
COLOR1 2C5
COLOR2 2C6
COLOR3 2C7
COLOR4 2C8

            Figure 3-1 Color Register Labels and Addresses 

For most purposes, the user controls the color registers by writing to the shadow locations. There
are only two cases in which the programmer would write directly to the CTIA addresses. The first
and most common is the display list interrupt which will be discussed in Section 5. The second



16 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

arises when the user disables the OS vertical blank interrupt routines that move the shadow values
Into CTIA. Vertical blank interrupts are discussed in Section 8.

Colors are encoded in a color register by a simple formula. The upper nybble gives the hue value,
which is identical to the second parameter of the BASIC SETCOLOR command. Table 9-3 of the
BASIC Reference Manual lists hue values. The lower nybble in the color register gives the
luminance value of the color. It is the same as the third parameter in the BASIC SETCOLOR
command. The lowest order bit of this nybble is not significant. Thus, there are eight luminances
for each hue. There are a total of 128 colors from which to choose (8 luminances times 16 hues).
In this book, the term `color' denotes a hue- luminance combination.

Once a color is encoded into a color register, it is mapped onto the screen by referring to the color
register that holds it. In map display modes which support four color registers the screen data
specifies which color register is to be mapped onto the screen. Since there are four color registers
it takes only two bits to encode one pixel. Thus, each screen data byte holds data for four pixels.
The value in each pair of bits specifies which color register provides the color for that pixel.

In text display modes (BASIC's GRAPHICS modes 1 and 2) the selection of color registers is
made by the top two bits of the character code. This leaves only six bits for defining the character,
which is why these two modes have only 64 characters available.

Color register indirection gives you four special capabilities. First, you can choose from 128
different colors for your displays. This allows you to choose the color that most nearly meets your
needs.

Second, you can manipulate the color registers in real time to produce pretty effects. The simplest
version of this is demonstrated by the following BASIC line:

            FOR I=0 TO 254 STEP 2:POKE 712,I:NEXT I 

This line simply cycles the border color through all possible colors. The effect is quite pleasing and
certainly grabs attention. The fundamental technique can be extended in a variety of ways. A
special variation of this is to create simple cyclic animation by drawing a figure in four colors and
then cycle the colors through the color registers rather than redrawing the figure. The following
program illustrates the idea:

            10 GRAPHICS 23
            20 FOR X=0 TO 39
            30 FOR l=0 TO 3
            40 COLOR I
            50 PLOT 4*X+I,O
            60 DRAWTO 4*X+1,95
            70 NEXT I
            80 NEXT X
            90 A=PEEK(712)
            100 POKE 712,PEEK(710)
            110 POKE 710,PEEK(709)
            120 POKE 709,PEEK(708)
            130 POKE 708,A
            140 GOTO 90 

The third application of color registers is to logically key colors to situations. For example, a paged
menu system can be made more understandable by changing the background color or the border
color for each page in the menu. Perhaps the screen could flash red when an illegal key is
pressed. The use of the color characters available in BASIC Graphics modes 1 and 2 can greatly
extend the impact of textual material. An account sum could be shown in red if the account is in
the red, or black if the account is in the black. Important words or phrases can be shown in special
colors to make them stand out. The use of colors in map modes (no text) can also improve the
utility of such graphics. A single graphics image (a monster, a boat, or whatever) could be
presented in several different colors to represent several different versions of the same thing. It
costs a great deal of RAM to store an image, but it costs very little to change the color of an



17Graphics indirection

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

existing image. For example, it would be much easier to show three different boats by presenting
one boat shape in three different colors than three different boat shapes.

The fourth and most important application of color registers Is used with display list interrupts. A
single color register can be used to put up to 128 colors onto a single screen. This very Important
capability will be discussed in Sect ton 5.

CHARACTER SETS
Graphics indirection is also provided through the use of redefinable character set. A standard
character set is provided in ROM, but there is no reason why this particular character set must be
used. The user can create and display any character set desired. There are three steps necessary
to use a redefined character set. First, the programmer must define the character set. This is the
most time-consuming step. Each character is displayed on the screen on an 8x8 grid; it is encoded
in memory as an 8-byte table. Figure 3-2 depicts the encoding arrangement.

Character Image Binary
Representation

Hex Representation

           00000000
            00011000
            00111100
            01100110
            01100110
            01111110
            01100110
            00000000

00
            18
            3C
            66
            66
            7E
            66
            00

            Figure 3-2 Character Encoding

A full character set has 128 characters in it, each with a normal and an inverse video incarnation.
Such a character set needs 1024 bytes of space and must start on a 1K boundary. Character sets
for BASIC modes 1 and 2 have only 64 distinct characters, and so require only 512 bytes and must
start on a 1/2K boundary. The first 8 bytes define the zeroth character, the next 8 bytes define the
first character, and so on. Obviously, defining a new character set is a big job. Fortunately, there
are software packages on the market to make this job easier.

Once the character set is defined and placed into RAM, you must tell ANTIC where it can find the
character set. This is done by poking the page number of the beginning of the character table into
location $D409 (decimal 54281). The OS shadow location, which is the location you would
normally use, is called CHBAS and resides at $2F4 (decimal 756). The third step in using
character sets is to print the character you want onto the screen. This can be done directly from
BASIC with simple PRINT statements or by writing numbers directly into the screen memory.

A special capability of the system not supported in BASIC is the four- color character set option.
BASIC Graphics modes 1 and 2 support five colors, but each character in these modes is really a
two-color character; each one has a foreground color and a background color. The foreground
color can be any of four single colors, but only one color at a time can be shown within a single
character. This can be a serious hindrance when using character graphics.

There are two other text modes designed especially for character graphics. They are ANTIC
modes 4 and 5. Each character in these modes is only four pixels wide, but each pixel can have
four colors (counting background) The characters are defined just like BASIC Graphics mode 0
characters, except that each pixel is twice as wide and has two bits assigned to it to specify the
color register used. Unlike ANTIC modes 6 and 7 (BASIC modes 1 and 2), color register selection
is not made by the character name byte but instead by the defined character set. Each byte in the



18 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

character table is broken into four bit pairs, each of which selects the color for a pixel. (This is why
there are only four horizontal pixels per character.) The highest bit (D7) of the character name byte
modifies the color register used. Color register selection is made according to Figure 3-3:

bit pair in
character defn

D7 = 0 D7 = 1

            00
            01
            10
            11 

 COLBAK
            PFO
            PF1
            PF2 

COLBAK
            PFO
            PF1
            PF3

            Figure 3-3 Color Register Selection for Characters 

Using these text modes, multicolored graphics characters can be put onto the screen.

Another interesting ANTIC character mode is the lowercase descenders mode (ANTIC mode 3).
This mode displays 10 scan lines per mode line, but since characters use only eight bytes
vertically, the lower two scan lines are normally left empty. If a character in the last quarter of the
character set is displayed, the top two scan lines of the character will be left empty; the data that
should have been displayed there will instead be shown on the bottom two lines. This allows the
user to create lowercase characters with descenders.

APPLICATIONS OF CHARACTER SETS
Many interesting and useful application possibilities spring from character set Indirection. The
obvious application is the modified font. A different font can give a program a unique appearance.
It is possible to have Greek, Cyrillic, or other special character sets. Going one step further, you
can create graphics fonts. The ENERGY CZAR(TM) computer program uses a redefined
character set for bar graphs. A character occupies eight pixels; tints means that bar charts
implemented with standard characters have a resolution of eight pixels, a rather poor resolution.
ENERGY CZAR uses a special character set in which some of the less popular text symbols
(ampersands, pound signs, and the like) have been replaced with special bar chart characters.
One character is a one-pixel bar, another is a two-pixel bar, and so on to the full eight-pixel bar.
The program can thus draw detailed bar charts with resolution of a single pixel. Figure 3-4 shows a
typical display from this program. The mix of text with map graphics is only apparent; the entire
display is constructed with characters.

            Figure 3-4 Energy CZAR Bar Charts 

In many applications, character sets can be created that show special images. For example, by
defining a terrain graphics character set with river characters, forest characters, mountain



19Graphics indirection

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

characters, and so forth, It is possible to make a terrain map of any country. Indeed, with
imagination a map of terrain on a different planet can be done just as easily. When doing this, it is
best to define five to eight characters for each terrain type. Each variation of a single type should
be positioned slightly differently in the character pixel. By mixing the different characters together,
It is possible to avoid the monotonous look that Is characteristic of primitive character graphics.
Most people won't realize that the resulting map uses character graphics until they study the map
closely. Figure 3-5 shows a display of a terrain map created with character set graphics. The
reproduction in black and white does not do justice to the original display, which has up to 18
colors.

            Figure 3-5 Terrain Map With Character Set Graphics

You could create an electronics character set with transistor characters, diode characters, wire
characters, and so forth to produce an electronics schematics program. Or you could create an
architectural character set with doorway characters, wall characters, corner characters, and so on
to make an architectural blueprint program. The graphics possibilities opened up by character
graphics with personal computers have not been fully explored.

Characters can be turned upside down by pokeing a 4 into location 755. One possible application
of this feature might be for displaying playing cards (as in a Blackjack game). The upper half of the
card can be shown right side up; with a display list interrupt the characters can be turned upside
down for the lower half of the card. This feature might also be of some use in displaying images
with mirror reflections (reflection pools, lakes, etc.

Even more exciting possibilities spring to mind when you realize that It is quite practical to change
character sets while the program is running. A character set costs either 512 bytes or 1024 bytes;
in either case It is quite inexpensive to keep multiple character sets in memory and flip between
them during program execution. There are three time regimes for such character set multiplexing:
human slow (more than 1 second); human fast (1/60 second to 1 second); and machine fast
(faster than 1/ 60 sec).

Human-slow character set multiplexing is useful for "change of scenery" work. For example, a
space travel program might use one graphics character set for one planet, another set for space,
and a third set for another planet. As the traveller changes locations, the program changes the
character set to give exotic new scenery. An adventure program might change character sets as
the player changes locales.

Human-fast character set multiplexing is primarily of value for animation. This can be done in two
ways: changing characters within a single character set, and changing whole character sets. The
SPACE INVADERS (trademark of Taito America Corp.) program on the ATARI Home Computer



20 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

uses the former technique. The invaders are actually characters. By rapidly changing the
characters, the programmer was able to animate them. This was easy because there are only six
different monsters; each has four different Incarnations.

High-speed cyclic animation of an entire screen is possible by setting up a number of character
sets, drawing the screen image, and then simply cycling through the character sets. If each
character has a slightly different incarnation in each of the character sets, that character will go
through an animated sequence as the character sets are changed. In this way a screen full of
objects could be made to cyclically move with a very simple loop. Once the character set data is in
place and the screen has been drawn, the code to animate the screen would be this simple:

            1000 FOR 1=1 TO 10
            1010 POKE 756,CHARBASE(I)
            1020 NEXT I
            1030 GOTO 1000 

Computer-fast character set animation is used to put multiple character sets onto a single screen.
This makes use of the display list interrupt capability of the computer. Display list interrupts are
discussed in Sect ton 5.

The use of character sets for graphics and animation has many advantages and some limitations.
The biggest advantage is that it costs very little RAM to produce detailed displays. A graphics
display using BASIC mode 2 characters (such as the one shown in Figure 3-5) can give as much
detail and one more color than a BASIC mode 7 display. Yet the character Image will cost 200
bytes while the map image will cost 4000 bytes. The RAM cost for multiple character sets is only
512 bytes per set, so It Is inexpensive to have multiple character sets. Screen manipulations with
character graphics are much faster because you have less data to manipulate. However, character
graphics are not as flexible as map graphics. You cannot put anything you want anywhere on the
screen. This limitation would preclude the use of character graphics in some applications.
However, there remain many graphics applications for which the program need display only a
limited number of predefined shapes in fixed locations. In these cases, character graphics provide
great utility. 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Player-Missile
graphics

Chapter

IV



22 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

4 Player-Missile graphics

DIFFICULTIES WITH HIGH-SPEED ANIMATION
Animation is an important capability of any home computer system. Activity on the screen can
greatly add to the excitement and realism of any program. Certainly animation is crucial to the
appeal of many computer games. More importantly, an animated image can convey information
with more impact and clarity than a static image. It can draw attention to an item or event of
importance. It can directly show a dynamic process rather than indirectly talk about it. Animation
must accordingly be regarded as an important element of the graphics capabilities of any computer
system.

The conventional way to effect animation with home computers is to move the image data through
the screen RAM area. This requires a two-step process. First, the program must erase the old
image by writing background values to the RAM containing the current image. Then the program
must write the image data to the RAM corresponding to the new position of the image. By
repeating this process over and over, the image will appear to move on the screen.

There are problems with this technique. First, if the animation is being done in a graphics mode
with large pixels, the motion will not be smooth; the image will jerk across the screen. With other
computers the only solution is to use a graphics mode with smaller pixels (higher resolution). The
second problem is much worse. The screen is a two-dimensional image, but the screen RAM is
organized one-dimensionally. This means that an image which is contiguous on the screen will not
be contiguous in the RAM. The discrepancy is illustrated in Figure 4-1.

Image Correspondin
g
Bytes in RAM

00 00 00
00 99 00
00 BD 00
00 FF 00
00 BD 00
00 99 00
00 00 00

            Spacing of Bytes in RAM:

            00 00 00 00 99 00 00 BD 00 00 FF 00 00 BD 00 00 99 00 00 00 00

            Image Bytes Scattered Through RAM

            Figure 4-1 Noncontiguous RAM Images 

The significance of this discrepancy does not become obvious until you try to write a program to
move such an image. Look how the bytes that make up the image are scattered through the RAM.
To erase them, your program must calculate their address. This calculation is not always easy to
do. The assembly code just to access a single byte at screen location (XPOS, YPOS) would look
like this (this code assumes 40 bytes per screen line):

            LDA SCRNRM     Address of beginning of screen RAM
            STA POINTR     zero page pointer
            LDA SCRNRM+1   high order byte of address
            STA POINTR+1   high order pointer
            LDA #$00
            STA TEMPA+1    temporary register
            LDA YPOS       vertical position
            ASL A          times 2
            ROL TEMPA+1    shift carry into TEMPA+1
            ASL A          times 4
            ROL TEMPA+1    shift carry again
            ASL A          times 8



23Player-Missile graphics

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            ROL TEMPA+1    shift again
            LDX TEMPA+1    save YPOS*8
            STX TEMPB+1    into TEMPB
            STA TEMPB      low byte
            ASL A          times 16
            ROL TEMPA+1
            ASL A          times 32
            ROL TEMPA+1
            CLC
            ADC TEMPB      add YPOS*8 to get YPOS*40
            STA TEMPB
            LDA TEMPA+1    now do high order byte
            ADC TEMPB+1
            STA TEMPB+1
            LDA TEMPB      TEMPB contains the offset from the top of screen to pixel
            CLC
            ADC POINTR
            STA POINTR
            LDA TEMPB+1
            ADC POINTR+1
            STA POINTR+1
            LDY XPOS
            LDA (POINTR),Y 

Clearly, this code to access a screen location is too cumbersome. This is certainly not the most
elegant or fastest code to solve the problem. Certainly a good programmer could take advantage
of special circumstances to make the code more compact. The point is that accessing pixels on a
screen takes a lot of computing. The above routine takes about 100 machine cycles to access a
single byte on the screen. To move an image that occupies, say, 50 bytes, would require 100
accesses or about 10,000 machine cycles or roughly 10 milliseconds. This may not sound like
much, but if you want to achieve smooth motion, you have to move the object every 17
milliseconds. If there are other objects to move or any calculations to carry out there isn't much
processor time left to devote to them. What this means is that this type of animation (called
"playfield animation") is too slow for many purposes. You can still get animation this way, but you
are limited to few objects or small objects or slow motion or few calculations between motion. The
trade-offs that a programmer must make in using such animation are too restrictive.

PLAYER-MISSILE FUNDAMENTALS
The ATARI Home Computer solution to this problem is player-missile graphics. In order to
understand player-missile graphics, it is important to understand the essence of the problem of
playfield animation: the screen image is two-dimensional while the RAM image is one-dimensional.
The solution was to create a graphics object that is one-dimensional on the screen as well as
one-dimensional in RAM. This object (called a player) appears in RAM as a table that is either 128
or 256 bytes long. The table is mapped directly to the screen. It appears as a vertical band
stretching from the top of the screen to the bottom. Each byte in the table is mapped into either
one or two horizontal scan lines, with the choice between the two made by the programmer. The
screen image is a simple bit-map of the data in the table. If a bit is on, then the corresponding pixel
in the vertical column is lit; if the bit is off, then the corresponding pixel is off. Thus, the player
image is not strictly one-dimensional; it is actually eight bits wide.

Drawing a player image on the screen is quite simple. First you draw a picture of the desired image
on graph paper. The image must be no more than eight pixels wide. You then translate the image
into binary code, substituting ones for illuminated pixels and zeros for empty ones. Then you
translate the resulting binary number into decimal or hexadecimal, depending on which is more
convenient. Then you store zeros into the player RAM to clear the image. Next, store the image
data into the player RAM, with the byte at the top of the player image going first, followed by the
other image bytes in top to bottom sequence. The further down in RAM you place you place data,
the lower the image will appear on the screen.
VERTICAL MOTION
Animating this image is very easy. Vertical motion is obtained by moving the image data through
the player RAM. This is, in principle, the same method used in playfield animation, but there is a
big difference in practice; the move routine for vertical motion is a one-dimensional move instead
of a two-dimensional move. The program does not need to multiply by 40 and it often does not
need to use indirection. It could be as simple as:

                 LDX $01
     LOOP LDA PLAYER,X



24 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

          STA PLAYER-1,X
          INX
          BNE LOOP 

This routine takes about 4 milliseconds to move the entire player, about half as long as the
playfield animation routine which actually moves only 50 bytes where this one moves 256 bytes. If
high speed is necessary, the loop can be trimmed to move only the image bytes themselves rather
than the whole player; then the loop would easily run in about 100-200 microseconds. The point
here is that vertical motion with players is both simpler and faster than motion with playfield
objects.

HORIZONTAL MOTION
Horizontal motion is even easier than vertical motion. There is a register for the player called the
horizontal position register. The value in this register sets the horizontal position of the player on
the screen. All you do is store a number into this register and the player jumps to that horizontal
position. To move the player horizontally simply change the number stored in the horizontal
position register. That's all there is to it.

Horizontal and vertical motion are independent; you can combine them in any fashion you choose.

The scale for the horizontal position register is one color clock per unit. Thus, adding one to the
horizontal position register will move the player one color clock to the right. There are only 228
color clocks in a singe scan line; furthermore, some of these are not displayed because of
overscan. The horizontal position register can hold 256 positions; some of these are off the left or
right edge of the screen. Position 47 corresponds to the left edge of the standard playfield; position
208 corresponds to the right edge of the standard playfield. Thus, the visible region of the of the
player is in horizontal positions 47 through 208. Remember, however, that this may vary from
television to television due to differences in overscan. A conservative range of values is from 60 to
200. This coordinate range can sometimes be clumsy to use, but it does offer a nice feature: a
simple way to remove a player from the screen is to set the player's horizontal position to zero.
With a single load and store in assembly (or a singe POKE in BASIC), the player will disappear.

OTHER PLAYER-MISSILE FEATURES
The system described so far makes it possible to produce high-speed animation. There are a
number of embellishments which greatly add to its overall utility. The first embellishment is that
there are four individual players to use. These players all have their own sets of control registers
and RAM area; thus their operation is completely independent. They are labelled P0 through P3.
They can be used side by side to give up to 32 bits of horizontal resolution, or they can be used
independently to give four movable objects.

Each player has its own color register; this color register is completely independent of the playfield
color registers. The player color registers are called COLP(X) and are shadowed at PCOLR(X).
This gives you the capability to put much more color onto the screen. However, each player has
only one color; multicolored players are not possible without display list interrupts (display list
interrupts are discussed in Section 5).

Each player has a controllable width; you can set it to have normal width, double width, or
quadruple width with the SIZEP(X) registers. This is useful for making players take on different
sizes. You also have the option of choosing the vertical resolution of the players. You can use
single-line resolution, in which each byte in the player table occupies one horizontal scan line, or
double-line resolution, in which each byte occupies two horizontal scan lines. With single-line
resolution, each player bit-map table is 256 bytes long; with double-line resolution each table is
128 bytes long. This is the only case where player properties are not independent; the selection of
vertical resolution applies to all players. Player vertical resolution is controlled by bit D4 of the
DMACTL register. In single-line resolution, the first 32 bytes in the player table area lie above the
standard playfield. The last 32 bytes lie below the standard playfield. In double-line resolution, 16
bytes lie above and 16 bytes lie below the standard playfield.

MISSILES
The next embellishment is the provision of missiles. These are 2-bit wide graphics objects
associated with the players. There is one missile assigned to each player; it takes its color from the
player's color register. Missile shape data comes from the missile bit-map table in RAM just in front



25Player-Missile graphics

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

of the player's table. All four missiles are packed into the same table (four missiles times 2 bits per
missile gives 8 bits). Missiles can move independently of players; they have their own horizontal
position registers. Missiles have their own size register, SIZEM, which can set the horizontal width
just like the SIZEP(X) registers do for players. However, missiles cannot be set to different sizes;
they are all set together. Missiles are useful as bullets or for skinny vertical lines on the screen. If
desired, the missiles can be grouped together into a fifth player, in which case they take the color
of playfield color register 3. This is done by setting bit D4 of the priority control register (PRIOR).
Note that missiles can still move independently when this option is in effect; their horizontal
positions are set by their horizontal position registers. The fifth player enable bit only affects the
color of the missiles.

You move a missile vertically the same way that you move a player: by moving the missile image
data through the missile RAM area. This can be difficult to do because missiles are grouped into
the same RAM table. To access a single missile, you must mask out the bits for the other missiles.

PLAYFIELD AND PLAYFIELD PRIORITIES
An important feature of player-missile graphics is that players and missiles are completely
independent of the playfield. You can mix them with any graphics mode, text or map. This raises a
problem: what happens if a player ends up on top of some playfield image? Which image has
priority? You have the option to define the priorities used in displaying players. If you wish, all
players can have priority over all playfield color registers. Or you can set all playfield color registers
(except background) to have priority over all players. Or you can set player 0 and player 1
(henceforth referred to as P0 and P1) to have priority over all playfield color registers, with P2 and
P3 having less priority than the playfield. Or you can set playfield color registers 0 and 1 (PF0 and
PF1) the have priority over all players, which then have priority over PF2 and PF3. These priorities
are selected with the priority control register (PRIOR) which is shadowed at GPRIOR. This
capability allows a player to pass in front of one image and behind another, allowing
three-dimensional effects.

HARDWARE COLLISION DETECTION
The final embellishment is the provision for hardware collision detection. This is primarily of value
for games. You can check if any graphic object (player or missile) has collided with anything else.
Specifically, you can check for missile-player collisions, missile-playfield collisions, player-player
collisions, and player-playfield collisions. There are 54 possible collisions, and each one has a bit
assigned to it that can be checked. If the bit is set, a collision has occurred. These bits are mapped
into 15 registers in CTIA (only the lower 4 bits are used and some are not meaningful). These are
read only registers; they cannot be cleared by writing zeros to them. The registers can be cleared
for further collision detection by writing any value to register HITCLR. All collision registers are
cleared by this command.

In hardware terms, a collision occurs when a player image coincides with another image; thus, the
collision bit will not be set until the part of the screen showing the collision is drawn. This means
that collision detection might not occur until as much as 16 milliseconds have elapsed since the
player was moved. The preferred solution is to execute player motion and collision detection during
the vertical blank interrupt routine (see Section 8 for a discussion of vertical blank interrupts). In
this case, collision detection should be checked first, then collisions cleared, then players moved.
Another solution is to wait at least 16 milliseconds after moving a player before checking for a
collision involving that player.

There are a number of steps necessary to use player-missile graphics. First you must set aside a
player-missile RAM area and tell the computer where it is. If you use single-line resolution, this
RAM area will be 1280 bytes long; if you use double-line resolution it will be 640 bytes long. A good
practice is to use the RAM area just in front of the display area at the top of RAM. The layout of the
player-missile area is shown in Figure 4-2.



26 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 4-2 Player-Missile RAM Area Layout 

The pointer to the beginning of the player-missile area is labelled PMBASE. Because of internal
limitations of ANTIC, PMBASE must be on a 2K address boundary for single-line resolution, or a
1K address boundary for double-line resolution. If you elect not to use all of the players or none of
the missiles, the areas of RAM set aside for the unused objects may be used for other purposes.
Once you have decided where your player-missile RAM area will be, you inform ANTIC of this by
storing the page number of PMBASE into the PMBASE register in ANTIC. Note that the address
boundary restrictions on PMBASE preclude vertical motion of players by modifying PMBASE.

The next step is to clear the player and missile RAM by storing zeros into all locations in the
player-missile RAM area. Then draw the players and missiles by storing image data into the
appropriate locations in the player-missile RAM area.

Next, set the player parameters by setting the player color, horizontal position, and width registers
to their initial values. If necessary, set the player/playfield priorities. Inform ANTIC of the vertical
resolution you desire by setting bit D4 of register DMACTL (shadowed at SDMCTL) for single-line
resolution, and clearing the bit for double-line resolution. Finally, enable the players by setting the
PM DMA enable bit in DMACTL. Be careful not to disturb the other bits in DMACTL. A sample
BASIC program for setting up a player and moving it with the joystick is given below:

            1   PMBASE=54279:REM                       Player-missile base pointer
            2   RAMTOP=106:REM                         OS top of RAM pointer
            3   SDMCTL=559:REM                         RAM shadow of DMACTL register
            4   GRACTL=53277:REM                       CTIA graphics control register
            5   HPOSP0=53248:REM                       Horizontal position of P0
            6   PCOLR0=704:REM                         Shadow of player 0 color
            10  GRAPHICS 0: SETCOLOR 2,0,0:REM         Set background color to black
            20  X=0:REM                                BASIC's player horizontal position
            30  Y=48:REM                               BASIC's player vertical position
            40  A=PEEK(RAMTOP)-8:REM                   Get RAM 2K below top of RAM
            50  POKE PMBASE,A:REM                      Tell ANTIC where PM RAM is
            60  MYPMBASE=256*A:REM                     Keep track of PM RAM address
            70  POKE SDMCTL,46:REM                     Enable PM DMA with 2-line res
            80  POKE GRACTL,3:REM                      Enable PM display
            90  POKE HPOSP0,100:REM                    Declare horizontal position
            100 FOR I=MYPMBASE+512 TO MYPMBASE+640:REM this loop clears player
            110 POKE I,0
            120 NEXT I
            130 FOR I=MYPMBASE+512+Y to MYPMBASE+518+Y
            140 READ A:REM                             This loop draws the player
            150 POKE I,A
            160 NEXT I
            170 DATA 8,17,35,255,32,16,8
            180 POKE PCOLR0,88:REM                     Make the player pink



27Player-Missile graphics

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            190 A=STICK(0):REM                         Read joystick
            200 IF A=15 THEN GOTO 190:REM              If inactive, try again
            210 IF A=11 THEN X=X-1: POKE HPOSP0,X
            220 IF A=7 THEN X=X+1: POKE HPOSP0,X
            230 IF A<>13 THEN GOTO 280
            240 FOR I=8 TO 0 STEP -1
            250 POKE MYPMBASE+512+Y+I,PEEK(MYPMBASE+511+Y+I)
            260 NEXT I
            270 Y=Y+1
            280 IF A<>14 THEN GOTO 190
            290 FOR I=0 TO 8
            300 POKE MYPMBASE+511+Y+I,PEEK(MYPMBASE+512+Y+I)
            310 NEXT I
            320 Y=Y-1
            330 GOTO 190 

Once players are displayed, they can be difficult to remove from the screen. This is because the
procedure by which they are displayed involves several steps. First, ANTIC retrieves player-missile
data from RAM (if such retrieval is enabled in DMACTL). Then ANTIC ships the player-missile
data to CTIA (if such action is enabled in GRACTL). CTIA displays whatever is in its player and
missile graphics registers (GRAFP0 through GRAFP3 and GRAFM). Many programmers attempt
to turn off player-missile graphics by clearing the control bits in DMACTL and GRACTL. This only
prevents ANTIC from sending new player-missile data to CTIA; the old data in the GRAF(X)
registers will still be displayed. To completely clear the players the GRAF(X) registers must be
cleared after the control bits in DMACTL and GRACTL have been cleared. A simpler solution is to
leave the player up but set its horizontal position to zero. Of course, if this solution is used, ANTIC
will continue to use DMA to retrieve player-missile data, wasting roughly 70,000 machine cycles
per second.

APPLICATIONS OF PLAYER-MISSILE GRAPHICS
Player-missile graphics allow a number of very special capabilities. They are obviously of great
value in animation. They do have limitations: there are only four players and each is only eight bits
wide If you need more bits of horizontal resolution you can always fall back on playfield animation.
But for high-speed animation or quick and dirty animation, player-missile graphics work very well.

It is possible to bypass ANTIC and write player-missile data directly into the player-missile graphics
registers (GRAFP(X)) in CTIA. This gives the programmer more control over player-missile
graphics. It also increases his responsibilities concomitantly. The programmer must maintain a bit
map of player-missile data and move it into the graphics registers at the appropriate times. The
6502 must therefore be slaved to the screen drawing cycle. (See the discussion of kernels in
Chapter 5.) This is a clumsy technique that offers minor improvements in return for major
programming efforts. The programmer who bypasses the hardware power offered by ANTIC must
make up for it with his own effort.

Players can also be used to produce apparent 3-dimensional motion. This is accomplished with
the player width option. Each player is drawn with one of several bit maps. One bit map shows the
player as 6 bits wide, and another shows the player in 8 bits. When the 6 bit player is drawn at
normal resolution, it will be 6 color clocks wide. The next size step is achieved by going to double
width with the 6 bit image; this will be 12 color clocks wide. The 8 bit image will be 16 color clocks
wide. Similarly, going to quadruple width will produce images 24 and 32 color clocks wide. Thus,
the image can grow in size from 6 color clocks to 32 color clocks wide. This technique is used very
effectively in STAR RAIDERS. The Zylons there are two players with 16 bits, so the size transitions
are even smoother.

Player-missile graphics offer many capabilities in addition to animation. Players are an excellent
way to increase the amount of color in a display. The four additional color registers they provide
allow four more colors on each line of the display. Of course, the 8-bit resolution does limit he
range of their application. There is a way around this that can sometimes be used. Take a player
at quadruple width and put it onto the screen. Then set the priorities so that the player has lower
priority than a playfield color. Next, reverse that playfield color with background, so that the
apparent background color of the screen is really a playfield color. The player disappears behind
this new false background. Now cut a hole in the false background by drawing true background on
it. The player will show up in front of the true background color, but only in the area where true
background has been drawn. In this way the player can have more than eight bits of horizontal
resolution. A sample program for doing this:



28 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            1   RAMTOP=106:REM                    OS top of RAM pointer
            2   PMBASE=54279:REM                  ANTIC player-missile RAM pointer
            3   SDMCTL=559:REM                    Shadow of DMACTL
            4   GRACTL=53277:REM                  CTIA graphics control register
            5   HPOSP0=53248:REM                  Horizontal position register of P0
            6   PCOLR0=704:REM                    Shadow of player 0 color register
            7   SIZEP0=53256:REM                  Player width control register
            8   GPRIOR=623:REM                    Priority control register
            10  GRAPHICS 7
            20  SETCOLOR 4,8,4
            30  SETCOLOR 2,0,0
            40  COLOR 3
            50  FOR Y=0 TO 79:REM                 This loop fills the screen
            60  PLOT 0,Y
            70  DRAWTO 159,Y
            80  NEXT Y
            90  A=PEEK(RAMTOP)-20:REM             Must back up further for GR. 7
            100 POKE PMBASE,A
            110 MYPMBASE=256*A
            120 POKE SDMCTL,46
            130 POKE GRACTL,3
            140 POKE HPOSP0,100
            150 FOR I=MYPMBASE+512 TO MYPMBASE+640
            160 POKE I,255:REM                    Make player solid color
            170 NEXT I
            180 POKE PCOLR0,88
            190 POKE SIZEP0,3:REM                 Set player to quadruple width
            200 POKE GPRIOR,4:REM                 Set priority
            210 COLOR 4
            220 FOR Y=30 TO 40
            230 PLOT Y+22,Y
            240 DRAWTO Y+43,Y
            250 NEXT Y 

This program produces the following display:

            Figure 4-3 Masking a Player for More Resolution 

SPECIAL CHARACTERS
Another application of player-missile graphics is for special characters. There are many special
types of characters that cross vertical boundaries in normal character sets. One way to deal with
these is to create special character sets that address this problem. Another way is to use a player.
Subscripts, integral signs, and other special symbols can be done this way. A sample program for
doing this is:

            1   RAMTOP=106:REM                    OS top of RAM pointer
            2   PMBASE=54279:REM                  ANTIC player-missile RAM pointer



29Player-Missile graphics

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            3   SDMCTL=559:REM                    Shadow of DMACTL
            4   GRACTL=53277:REM                  CTIA's graphics control register
            5   HPOSP0=53248:REM                  Horizontal position register of P0
            6   PCOLR0=704:REM                    Shadow of player 0 color register
            10  GRAPHICS 0: A=PEEK(RAMTOP)-16:REM Must back up for 1-line resolution
            20  POKE PMBASE,A
            30  MYPMBASE=256*A
            40  POKE SDMCTL,62
            50  POKE GRACTL,3
            60  POKE HPOSP0,102
            70  FOR I=MYPMBASE+1024 TO MYPMBASE+1280
            80  POKE I,0
            90  NEXT I
            100 POKE PCOLR0,140
            110 FOR I=MYPMBASE+512+Y to MYPMBASE+518+Y
            120 READ X
            130 POKE MYPMBASE+1100+I,X
            140 NEXT X
            150 DATA 14,29,24,24,24,24,24,24
            160 DATA 24,24,24,24,24,24,184,112
            170 ?" ":REM                          Clear screen
            180 POSITION 15,6
            190 ?"xdx" 

This program produces the following display:

            Figure 4-4 Using a Player as a Special Character 

A particularly useful application of players is for cursors. With their ability to smoothly move
anywhere over the screen without disturbing its contents they are ideally suited for such
applications. The cursor can change color as it moves over the screen to indicate what it has
under it.

Player-missile graphics provide many capabilities. Their uses for action games as animated
objects are obvious. They have many serious uses as well. They can add color and resolution to
any display. They can present special characters. They can be used as cursors. Use them. 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Display list
interrupts

Chapter

V



31Display list interrupts

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

5 Display list interrupts

The display list interrupt (DLI) is one of the most powerful capabilities built into the ATARI Home
Computer. It is also one of the least accessible features of the system, requiring a firm
understanding of assembly language as well as all of the other characteristics of the machine.
Display list interrupts all by themselves provide no additional capabilities; they must be used in
conjunction with the other features of the system such as player-missile graphics, character set
indirection, or color register indirection. With display list interrupts the full power of these features
can be deployed.

THEORY OF OPERATION
Display list interrupts take advantage of the sequential nature of the raster scan television display.
The television draws the screen image in a time sequence. It draws images from the top of the
screen to the bottom. This drawing process takes about 17,000 microseconds, which looks
instantaneous to the human eye, but is a long time in the time scale that the computer works in.
The computer has plenty of time to change the parameters of the screen display while it is being
drawn. Of course, it must effect each change each time the screen is drawn, which is 60 times per
second. Also (and this is the tricky part), it must change the parameter in question at exactly the
same time each time the screen is drawn. That is, the cycle of changing screen parameters must
be synchronized to the screen drawing cycle. One way to do this might be to lock the 6502 up into
a tight timing loop whose execution frequency is exactly 60 Hertz. This would make it very difficult
to carry out any computations other than the screen display computations. It would also be a
tedious job. A much better way would be to interrupt the 6502 just before the time has come to
change the screen parameters. The 6502 responds to the interrupt, changes the screen
parameters, and returns to its normal business. The interrupt to do this must be precisely timed to
occur at exactly the same time during the screen drawing process. This specially timed interrupt is
provided by the ANTIC chip; it is called a display list interrupt (DLI).

The timing and execution of any interrupt process can be intricate; therefore we will first narrate
the sequence of events in a properly working DLI. The process begins when the ANTIC chip
encounters a display list instruction with its interrupt bit (bit D7) set. ANTIC waits until the last scan
line of the mode line it is currently displaying. ANTIC then refers to its NMIEN register to see if
display list interrupts have been enabled. If the enable bit is clear, ANTIC ignores the interrupt and
continues its regular tasks. If the enable bit is set, ANTIC pulls down the NMI line on the 6502.
ANTIC then goes back to its normal display activities. The 6502 vectors through the NMI vector to
an interrupt service routine in the OS. This routine first determines the cause of the interrupt. If the
interrupt is indeed a DLI, the routine vectors through addresses $0200, $0201 (low then high) to a
DLI service routine. The DLI routine changes one or more of the graphics registers which control
the display. Then the 6502 RTIs to resume its mainline program.

There are a number of steps involved in setting up a DLI. The very first thing you must do is write
the DLI routine itself. The routine must push any 6502 registers that will be altered onto the stack,
as the OS interrupt poll routine saves no registers. (The 6502 does automatically push the
Processor Status Register onto the stack.) The routine should be short and fast; it should only
change registers related to the display. It should end by restoring any 6502 registers pushed onto
the stack. Next you must place the DLI service routine somewhere in memory. Page 6 is an ideal
place. Set the vector at $0200, $0201 to point to your routine. Determine the vertical point on the
screen where you want the DLI to occur, then go to the corresponding display list instruction and
set bit D7 of the previous instruction. Finally, enable the DLI by setting bit D7 of the NMIEN register
at $D40E. The DLI will immediately begin functioning.
DLI TIMING
As with any interrupt service routine, timing considerations can be critical. ANTIC does not send
the interrupt to the 6502 immediately upon encountering an interrupt instruction; it delays this until
the last scan line of the interrupting mode line. There are a number of processing delays before the
DLI reaches your service routine. Thus, your DLI service routine will begin executing while the
electron beam is partway across the screen in the last scan line of the interrupting mode line. For
example, if such a DLI routine changes a color register, the old color will be displayed on the left
half of the screen and the new color will show up on the right half of the screen. Because of
uncertain timing in the response of the 6502 to an interrupt, the border between them will not be
sharp but will jiggle back and forth irritatingly.



32 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

There is a solution to this problem. It is provided in the form of the WSYNC (wait for horizontal
sync) register. Whenever this register is addressed in any way, the ANTIC chip pulls down the
ROY line on the 6502. This effectively freezes the 6502 until the register is reset by a horizontal
sync. The effect is that the 6502 freezes until the electron beam reaches the right edge of the
standard playfield. If you insert a STA WSYNC instruction just before the instruction which stores a
value into a color register, the color will go into the color register while the beam is off the screen.
The color transition will occur one scan line lower, but will be neat and clean.

The proper use of a DLI then is to set the DLI bit on the mode line before the mode line for which
you want the action to occur. The DLI service routine should first save the 6502 registers onto the
stack, and then load the 6502 registers with the new graphics values to be used. It should execute
a STA WSYNC, and then store the new values into the appropriate ANTIC or CTIA registers.
Finally, it should restore the 6502 registers and return from the interrupt. This procedure will
guarantee that the graphics registers are changed at the beginning of the desired line while the
electron beam is off the screen.

DLI EXAMPLE
A simple program demonstrating a DLI is given below:

            10 DLIST=PEEK(560)+256*PEEK(561):REM   Find display list
            20 POKE DLIST+15,130:REM               Insert interrupt instruction
            30 FOR l=0 TO 19:REM                   Loop for poking DLI service routine
            40 READ A:POKE 1536+1,A:NEXT I
            50 DATA 72,138,72,169,80,162,88
            60 DATA 141,10,212,141,23,208
            70 DATA 141,24,208,104,170,104,64
            80 POKE 512,0:POKE 513,6:REM           Poke in interrupt vector
            90 POKE 54286, 192: REM                Enable DLI 

This routine uses the following assembly language DLI service routine:

            PHA           Save accumulator
            TXA
            PHA           Save X-register
            LDA #$50      Dark color for characters
            LOX #$58      Pink
            STA WSYNC     Wait
            STA COLPF1    Store color
            STX COLPF2    Store color
            PLA
            TAX
            PLA           Restore registers
            RTI           Done

This is a very simple DLI routine. It changes the background color from blue to pink. It also
changes the color of the characters so that they show up as dark against the pink background.
You might wonder why the upper half of the screen remains blue even though the DLI routine
keeps stuffing pink into the color register. The answer is that the OS vertical blank interrupt routine
keeps stuffing blue into the color register during the vertical blank period. The blue color comes
from the OS shadow register for that color register. Every hardware color register is shadowed out
to a RAM location. You may already know about these shadow registers at locations 708 through
712. For most purposes you can change colors by poking values into the shadow registers. If you
poke directly into the hardware registers, the OS shadow process will wipe out your poked color
within a 60th of a second. For DLls, however, you must store your new color values directly into the
hardware registers. You can not use a DLI to set the color of the first displayed line of the screen;
the OS takes care of that line for you. Use DLls to change colors of lines below the first line.
ATTRACT MODE
By stuffing colors directly into the hardware registers, you create a new problem: you defeat the
automatic attract mode. Attract mode is a feature provided by the operating system. After nine
minutes without a keypress, the colors on the screen begin to cycle through random hues at
lowered luminances. This ensures that a computer left unattended for several hours does not burn
an image into the television screen. 1t is easy to build attract mode into a display list interrupt. Only
two lines of assembly code need be inserted into the DLI routine:

     Old            New
     LDA NEWCOL     LDA NEWCOL
     STA WSYNC      EOR COLRSH



33Display list interrupts

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

     STA COLPF2     AND DRKMSK
                    STA WSYNC
                    STA COLPF2

DRKMSK and COLRSH are zero page locations ($4E and $4F) set up and updated by the OS
during vertical blank interrupt. When attract mode is not in force, COLRSH takes a value of 00 and
DRKMSK takes $FF. When attract mode is in force, COLRSH is given a new random value every
4 seconds and DRKMSK holds a value of $F6. Thus, COLRSH scrambles the color and DRKMSK
lops off the highest luminance bit.
DETAILED TIMING CONSIDERATIONS
The implementation of attract mode in DLls exacerbates an already difficult problem: the shortage
of execution time during a DLI. A description of DLI timing will make the problem more obvious.
DLI execution is broken into three phases: - Phase One covers the period from the beginning of
the DLI to the STA WSYNC instruction. During Phase One the electron beam is drawing the last
scan line of the interrupting mode line. - Phase Two covers the period from the STA WSYNC
instruction to the appearance of the beam on the television screen. Phase Two corresponds to
horizontal blank; all graphics changes should be made during Phase Two. - Phase Three covers
the period from the appearance of the beam on the screen to the end of the DLI service routine.
The timing of Phase Three is not critical.

One horizontal scan line takes 114 processor clock cycles of real time. A DLI reaches the 6502 on
cycle number 8. The 6502 takes from 8 to 14 cycles to respond to the interrupt. The OS routine to
service the interrupt and vector it on to the DLI service routine takes 11 machine cycles. During
this time from 1 to 3 cycles wi11 be stolen for memory refresh DMA. Thus, the DLI service routine
is not reached until from 28 to 36 clock cycles have elapsed. For planning purposes we must
assume the worst case and program as if the DLI service routine is reached on cycle number 36.
Furthermore, the

STA WSYNC instruction must be reached by cycle number 100; this reduces the time available in
Phase One by 14 cycles. Finally, ANTIC's DMA will steal some of the remaining clock cycles from
the 6502. Nine cycles will be lost to memory refresh DMA. This leaves an absolute maximum of 55
cycles available for Phase One. This maximum is achieved only with blank line mode lines.
Character and map mode instructions will result in the loss of one cycle for each byte of display
data. The worst case arises with BASIC modes 0, 7, and 8, which require 40 bytes per line. Only
15 machine cycles are available to Phase One in such modes. Thus, a Phase One routine will
have from 15 to 55 machine cycles of execution time available to it.

Phase Two, the critical phase, extends over 27 clock cycles of real time. As with Phase One, some
of these cycles are lost to cycle stealing DMA. Player-missile graphics will cost five cycles if they
are used. The display instruction will cost one cycle; if the LMS option is used, two more cycles will
be stolen. Finally, one or two cycles may be lost to memory refresh or display data retrieval. Thus,
from 17 to 26 machine cycles are available to Phase Two.

The problems of DLI timing now become obvious. To load, attract and store a single color will
consume 14 cycles. Saving A, X, and Y onto the stack and then loading, attracting, and saving
three colors into A, X, and Y will cost 47 cycles, most if not all of Phase One. Obviously, the
programmer who wishes to use DLI for extensive graphics changes will expend much effort on the
timing of the DLI. Fortunately, the beginning programmer need not be concerned with extensive
timing calculations. If only single color changes or simple graphics operations are to be performed,
cycle counting and speed optimization are unnecessary. These considerations are only important
for high-performance situations.

There are no simple options for the programmer who needs to change more than three color
registers in a single DLI. It might be possible to load, attract, and store a fourth color early in Phase
Three if that color is not displayed on the left edge of the screen. Similarly, a color not showing up
on the right side of the screen could be changed during Phase One. Another approach is to break
one overactive DLI into two less ambitious DLls, each doing half the work of the original. The
second DLI could be provided by inserting a single scan line blank instruction (with DLI bit set) into
the display list just below the main interrupting mode line. This will consume some screen space.

Another partial solution is to perform the attract chores during vertical blank periods. To do this,
two tables of colors must be kept in RAM. The first table contains color values intended to be



34 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

displayed by the DLI routines. The second table contains the attracted values of these colors.
During vertical blank, a user-supplied interrupt service routine fetches each color from the first
table, attracts it, and stores the attracted color to the second table. The DLI routine then retrieves
values directly from the second table without paying the time penalty for attract.

MULTIPLE DLls
It is often desirable to have a number of DLls occurring at several vertical positions on the screen.
This is an important way to add color to a display. Unfortunately, there is only one DLI vector; if
multiple DLls are to be implemented then the vectoring to the appropriate DLI must be
implemented, in the DLI routine itself. There are several ways to do this. If the DLI routine does the
same process with different values then it can be table-driven. On each pass through the DLI
routine, a counter is incremented and used as an index to a table of values. A sample DLI routine
for doing this is as follows:

            PHA
            TXA
            PHA
            INC COUNTR
            LDX COUNTR
            LDA COLTAB,X         Use page two for color table
            STA WSYNC            Wait
            STA COLBAK
            CPX #$4F             Last line?
            BNE ENDDLI           No, exit
            LDA #$00             Yes, reset counter
            STA COUNTR
            ENDDLI PLA
            TAX
            PLA                  Restore accumulator
            RTI 

The BASIC program to call this routine is:

            10 GRAPHICS 7
            20 DLIST=PEEK(560)+256*PEEK(561):REM        Find display list
            30 FOR J=6 TO 84:REM                        Give every mode line a DLI
            40 POKE DLIST+J,141:REM                     BASIC mode 7 with DLI bit set
            50 NEXT J
            60 FOR J=0 TO 30
            70 READ A:POKE 1536+J,A:NEXTJ:REM           Poke in DLI service routine
            80 DATA 72,138,72,238,32,6,175,32,6
            90 DATA 189,0,240,141,10,212,141,26,208
            100 DATA 224,79,208,5,169,0
            110 DATA 141,32,6,104,170,104,64
            120 POKE 512,0:POKE 513,6:REM               Vector to DLI service routine
            130 POKE 54286,192:REM                      Enable DLI 

This program will put 80 different colors onto the screen.

There are other ways to implement multiple DLls. One way is to use a DLI counter as a test for
branching through the DLI service routines to the proper DLI service routine. This slows down the
response of all the DLls, particularly the ones at the end of the test sequence. A better way is to
have each DLI service routine write the address of the next routine into the DLI vector at $200,
$201. This should be done during Phase Three. This is the most general solution to the problem of
multiple DLls. It has the additional advantage that vectoring logic is performed after the time critical
portion of the DLI, not before.

The OS keyboard click routine interferes with the function of the DLI. Whenever a key is pressed
and acknowledged, the onboard speaker is clicked. The timing for this click is provided by several
STA WSYNC instructions. This can throw off the timing of a DLI routine and cause the screen
colors to jump downward by one scan line for a fraction of a second. There is no easy solution to
this problem. One possible solution involves the VCOUNT register, a read-only register in ANTIC
which tells what scan line ANTIC is displaying. A DLI routine could examine this register to decide
when to change a color. Another solution is to disable the OS keyboard service routine and provide
your own keyboard routine. This would be a tedious job. The final solution is to accept no inputs
from the keyboard. If key presses are-not acknowledged, the screen jiggle does not occur.

KERNELS



35Display list interrupts

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The DLI was designed to replace a more primitive software/hardware technique called a kernel. A
kernel is a 6502 program loop which is precisely timed to the display cycle of the television set. By
monitoring the VCOUNT register and consulting a table of screen changes catalogued as a
function of VCOUNT values, the 6502 can arbitrarily control all graphics values for the entire
screen. A high price is paid for this power: the 6502 is not available for computations during the
screen display time, which is about 75 percent of the time. Furthermore, no computation may
consume more than the 4000 or so machine cycles available during vertical blank and overscan
periods. This restriction means that kernels can only be used with programs requiring little
computation, such as certain skill and action games. For example, the BASKETBALL program for
the ATARI 400/800 Computers uses a kernel; the program requires little computation but much
color. The multicolored players in this game could not be done with display list interrupts, because
DLls are keyed to playfield vertical positions, not player positions.

It is possible to extend the kernel idea right into a single scan line and change graphics registers
on the fly. In this way a single color register can present several colors on a single scan line. The
horizontal position of the color change is determined by the amount of time that elapses before the
change goes in. Thus, by carefully counting machine cycles, the programmer can get more
graphics onto the screen. Unfortunately, this is extremely difficult to achieve in practice. With
ANTIC DMAing the 6502, it is very difficult to know exactly how many cycles have really elapsed; a
simple count of 6502 cycles is not adequate. If ANTIC's DMA Is turned off, the 6502 can assume
full control of the display but must then perform all the work that ANTIC normally does. For these
reasons horizontal kernels are seldom worth the effort. However, if the two images to be displayed
in different colors are widely separated, say by 20 color clocks or more, the separation should
cover up the timing uncertainties and render this technique feasible.

APPLICATIONS OF DISPLAY LIST INTERRUPTS
The tremendous value of graphics indirection and all those modifiable registers in the hardware
now becomes obvious. With display list interrupts, every one of those registers can be changed on
the fly. You can put lots of color, graphics, and special effects onto the screen. The most obvious
application of DLls is to put more color onto the screen. Each color register can be changed as
many times as you have DLls. This applies to both playfield color registers and player color
registers. Thus, you have up to nine color registers, each of which can display up to 128 different
colors. Is that enough color for you? Of course, a normal program would not lend itself to
effectively using all of those colors. Too many DLls start slowing down the whole program.
Sometimes the screen layout cannot accommodate lots of DLls. In practice, a dozen colors is
easy, two dozen requires careful planning, and more than that requires a contrived situation.

Display list interrupts can give more than color; they can also be used to extend the power of
player-missile graphics. The horizontal position of a player can be changed by a DLI. In this way a
player can be repositioned partway down the screen. A single player can have several incarnations
on the screen. If you imagine a player as a vertical column with images drawn on it, a DLI
becomes a pair of scissors with which you can snip the column and reposition sections of it on the
screen. Of course, no two sections of the player can be on the same horizontal line, so two
incarnations of the player cannot be on the same horizontal line. If your display needs allow
graphics objects that will never be on the same horizontal line, a single player can do the job.

Another way to use DLls in conjunction with players is to change their width or priority. This would
most often be used along with the priority masking trick described in Section 4.

The last application of DLls is the changing of character sets partway down the screen. This allows
a program to use character graphics in a large window and regular text in a text window. Multiple
character set changes are possible; a program might use one graphics character set at the top of
the screen, another graphics character set in the middle of the screen, and a regular text character
set at the bottom. A `Rosetta Stone' program would also be possible, showing different text fonts
on the same screen. The vertical reflect bit can be changed with a DLI routine, allowing some text
to be rightside up and other text to be upside down.

The proper use of the DLI requires careful layout of the screen display. The designer must give
close consideration to the vertical architecture of display. The raster scan television system is not
two-dimensionally symmetric; it has far more vertical structure than horizontal structure. This is
because the pace for horizontal screen drawing is 262 times faster than the pace for vertical



36 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

screen drawing. The ATARI Home Computer display system was designed specifically for raster
scan television, and it mirrors the anisotropy of the raster scan system. The ATARI Home
Computer display is not a flat, blank sheet of paper on which you draw; it is a stack of thin strips,
each of which can take different parameters. The programmer who insists on designing an
isotropic display wastes many opportunities. You will achieve optimal results when you organize
the information you wish to display in a strong vertical structure. This allows the full power of the
DLI to be brought to bear.

Figure 5-1 shows some screen displays from various programs and gives estimates of the degree
of vertical screen architecture used in each.

SPACE INVADERS
(Trademark of Taito America Corporation)
***LOTS***

SCRAM
(A Nuclear Reactor Simulation)
***LITTLE***

MISSILE COMMAND
***SOME***

STAR RAIDERS
***LITTLE***



37Display list interrupts

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

GRAPH IT
***NONE***

ASTEROIDS
***NONE***

            Figure 5-1 Examples of Vertical Screen Architecture 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Scrolling

Chapter

VI



39Scrolling

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

6 Scrolling

SCROLLING
Quite frequently the amount of information that a programmer wants to display exceeds the
amount of information that can fit onto the screen. One way of solving this problem is to scroll the
information across the display. For example, listings of BASIC programs scroll vertically from the
bottom to the top of the screen. All personal computers implement this type of scrolling. However,
the ATARI Home Computer has two additional scrolling facilities that offer exciting possibilities.
The first is "Load Memory Scan" (LMS) coarse scrolling; the second is fine scrolling.

Conventional computers use coarse scrolling; in this type of scrolling, the pixels that hold the
characters are fixed in position on the screen and text is scrolled by moving bytes through the
screen RAM. The resolution of the scrolling is a single character pixel, which is very coarse. The
scrolling this produces is jerky and quite unpleasant. Furthermore, it is achieved by moving up to a
thousand bytes around in memory, a slow and clumsy task. In essence, the program must move
data through the playfield to scroll.

Some personal computers can produce a somewhat finer scroll by drawing images in a higher
resolution graphics mode and then scrolling these images. Although higher scrolling resolution is
achieved, more data must be moved to attain the scrolling and the program is consequently
slowed. The fundamental problem is that the scrolling is implemented by moving data through the
screen area.

There is a better way to achieve coarse scrolling with the ATAR.1 400/ 800: move the screen area
over the data. The display list opcodes support the Load Memory scan feature. The LMS
instruction was first described in Section 2 and tells ANTIC where the screen memory is. A normal
display list will have one LMS instruction at the beginning of the display list; the RAM area it points
to provides the screen data for the entire screen in a linear sequence. By manipulating the operand
bytes of the LMS instruction., a primitive scroll can be Implemented. In effect, this moves the
playfield window over the screen data. Thus, by manipulating just 2 address bytes, you can
produce an effect identical to moving the entire screen RAM. The following program does just that:

            10 DLIST=PEEK(560)+256*PEEK(561):REM Find display list
            20 LMSLOW=DLIST+4:REM Get low address of LMS operand
            30 LMSHIGH=DLIST+5:REM Get high address of LMS operand
            40 FOR 1=0 TO 255:REM Outer loop
            50 POKE LMSHIGH,
            60 FOR J=O TO 255:REM Inner loop
            70 POKE LMSLOW,J
            80 FOR Y=1 TO 50:NEXT Y:REM Delay loop
            90 NEXT J
            100 NEXT 1 

This program sweeps the display over the entire address space of the computer. The contents of
the memory are all dumped onto the screen. The scroll is a clumsy serial scroll combining
horizontal scrolling with vertical scrolling. A pure vertical scroll can be achieved by adding or
subtracting a fixed amount (the line length in bytes) to the LMS operand. The following program
does that:

            10 GRAPHICS 0
            20 DLIST=PEEK(560)+256*PEEK(561)
            30 LMSLOW=DLIST+4
            40 LMSHIGH=DLIST+5
            50 SCREENLOW=0
            60 SCREENHIGH=0
            70 SCREENLOW=SCREENLOW+40:REM Next line
            80 IF SCREENLOW<256 THEN GOTO 120:REM Overflow?
            90 SCREENLOW=SCREENLOW-256:REM Yes, adjust pointer
            100 SCREENHIGH=SCREENHIGH+1
            110 IF SCREENHIGH=256 THEN END
            120 POKE LMSLOW,SCREENLOW
            130 POKE LMSHIGH,SCREENHIGH
            140 GOTO 70 

HORIZONTAL SCROLLING
A pure horizontal scroll is not so simple to do as a pure vertical scroll. The problem is that the
screen RAM for a simple display list is organIzed serially. The screen data bytes for the lines are



40 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

strung in sequence, with the bytes for one line immediately following the bytes for the previous line.
You can horizontally scroll the lines by shifting all the bytes to the left; this is done by decrementing
the LMS operand. However, the leftmost byte on each line will then be scrolled into the rightmost
position in the next higher line. The first sample program above illustrated this problem.

The solution is to expand the screen data area and break it up into a series of independent
horizontal line data areas. Figure 6-1 schematically illustrates this idea:

normal data arrangement arrangement for horizontal scroll

            Figure 6-1 Arranging Screen RAM 

On the left is the normal arrangement. One-dimensional serial RAM is stacked in linear sequence
to create the screen data area. On the right is the arrangement we need for proper horizontal
scrolling. The RAM is of course still one-dimensional and still serial, but now it is used differently.
The RAM for each horizontal line extends much further than the screen can show. This is no
accident; the whole point of scrolling is to allow a program to display more information than the
screen can hold. You can't show all that extra information if you don't allocate the RAM to hold it.
With this arrangement you can implement true horizontal scrolling. You can move the screen
window over the screen data without the undesirable vertical roll of the earlier approach.

The first step in implementing pure horizontal scroll is to determine the total horizontal line length
and allocate RAM accordingly. Next, you must write a completely new display list with an LMS
instruction on each mode line. The display list will of course be longer than usual, but there is no
reason why you cannot write such a display list. What values do you use for the LMS operands? It
is most convenient to use the address of the first byte of each horizontal screen data line. There
will be one such address for each mode line on the screen. Once the new display list is in place,
ANTIC must be turned onto it and screen data must be written to populate the screen. To execute
a scroll, each and every LMS operand in the display list must be incremented for a rightward scroll
or decremented for a leftward scroll. Program logic must ensure that the image does not scroll
beyond the limits of the allocated RAM areas; otherwise, garbage displays will result. In setting up
such logic, the programmer must remember that the LMS operand points to the first screen data
byte in the displayed line. The maximum value of the LMS operand is equal to the address of the
last byte in the long horizontal line minus the number of bytes in one displayed line. Remember
also that the LMS value should not come within one screen display line's length (in bytes) of a 4K
address boundary, or the wrong data will be displayed due to LMS counter rollover.

As this process is rather intricate, let us work out an example. First, we must select our total
horizontal line length. We shall use a horizontal line length of 256 bytes, as this will simplify
address calculations. Each horizontal line will then require one page of RAM. Since we will use
BASIC mode 2, there will be 12 mode lines on screen; thus, 12 pages or 3K of RAM will be
required. For simplicity (and to guarantee that our screen RAM will be populated with nonzero
data), we will use the bottom 3K of RAM. This area is used by the OS and DOS and so should be
full of interesting data. To make matters more interesting, we'll put the display list onto page 6 so
that we can display the display list on the screen as we are scrolling. The initial values of the LMS
operands will thus be particularly easy to calculate; the low order bytes will all be zeros and the
high order bytes will be (in order) 0, 1, 2, etc. The following program performs all these operations
and scrolls the screen horizontally:

            10 REM first set up the display list
            20 POKE 1536,112:REM 8 blank lines



41Scrolling

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            30 POKE 1537,112:REM 8 blank lines
            40 POKE 1538,112:REM 8 blank lines
            50 FOR 1=1 TO 12:REM Loop to put in display list
            60 POKE 1536+3*1,71:REM BASIC mode 2 with LMS set
            70 POKE 1536+3*1+1,0:REM Low byte of LMS operand
            80 POKE 1536+3*1+2,1:REM High byte of LMS operand
            90 NEXT I
            100 POKE 1575,65:REM ANTIC JVB instruction
            110 POKE 1576,0:REM Display list starts at $0600
            120 POKE 1577,6
            130 REM tell ANTIC where display list is
            140 POKE 560.0
            150 POKE 561,6
            160 REM now scroll horizontally
            170 FOR 1=0 TO 235:REM Loop through LMS low bytes
            175 REM we use 235 --- not 255 --- because screen width is 20 characters
            180 FOR J=1 TO 12:REM for each mode line
            190 POKE 1536+3*J+1,1:REM Put in new LMS low byte
            200 NEXT J
            210 NEXT 1
            220 GOTO 170:REM Endless loop 

This program scrolls the data from right to left. When the end of a page is reached, it simply starts
over at the beginning. The display list can be found on the sixth line down (it's on page 6). 1t
appears as a sequence of double quotation marks.

The next step is to mix vertical and horizontal scrolling to get diagonal scrolling. Horizontal scrolling
is achieved by adding 1 to or subtracting 1 from the LMS operand. Vertical scrolling is achieved by
adding the line length to or subtracting the line length from the LMS operand. Diagonal scrolling is
achieved by executing both operations. There are four possible diagonal scroll directions. If, for
example, the line length is 256 bytes and we wish to scrolldown and to the right, we must add
256+(-1)=255 to each LMS operand in the display list. This is a 2-byte add; the BASIC program
example given above avoids the difficulties of 2-byte address manipulations but most programs will
not be so contrived. For truly fast two-dimensional scrolling, assembly language will be necessary.

All sorts of weird arrangements are possible if we differentially manipulate the LMS bytes. Lines
could scroll relative to each other or hop over each other. Of course, some of this could be done
with a conventional display but more data would have to be moved to do it. The real advantage of
LMS scrolling is its speed. Instead of manipulating an entire screenfull of data, many thousands of
bytes in size, a program need only manipulate two or perhaps a few dozen bytes.

FINE SCROLLING
The second important scrolling facility of the ATARI Computer is the fine scrolling capability. Fine
scrolling is the capability of scrolling a pixel in steps smaller than the pixel size. (Throughout this
section the term pixel refers to an entire character, not to the smaller dots that make up a
character.) Coarse scrolls proceed in steps equal to one pixel dimension; fine scrolls proceed in
steps of one scan line vertically and one color clock horizontally. Fine scrolling can only carry so
far; to get full fine scrolling over long distances on the screen you must couple fine scrolling with
coarse scrolling.

There are only two steps to implement fine scrolling. First, you set the fine scroll enable bits in the
display list instruction bytes for the mode lines in which you want fine scrolling. (In most cases you
want the entire screen to scroll so you set all the scroll enable bits in all the display list instruction
bytes.) Bit D5 of the display list instruction is the vertical scroll enable bit; bit D4 of the display list
instruction is the horizontal scroll enable bit. You then store the scrolling value you desire into the
appropriate scrolling register. There are two scrolling registers, one for horizontal scrolling and one
for vertical scrolling. The horizontal scroll register (HSCROL) is at $D404; the vertical scroll
`register (VSCROL) is at $D405. For horizontal scrolling, you store into HSCROL the number of
color clocks by which you want the mode line scrolled. For vertical scrolling, you store into
VSCROL the number of scan lines that you want the mode line scrolled. These scroll values will be
applied to every line for which the respective fine scroll is enabled.

There are two complicating factors that you encounter when you use fine scrolling. Both arise from
the fact that a partially scrolled display shows more information than a normal display. Consider for
example what happens when you horizontally scroll a line by half a character to the left. There are
40 characters in the line. Half of the first character disappears off of the left edge of the screen.



42 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The 40th character scrolls to the left. What takes its place? Half of a new character should scroll in
to take the place of the now scrolled 40th character. This character would be the 41st character.
But there are only 40 characters in a normal line. What happens?

If you have implemented coarse scrolling, then the 41st character suddenly appears on the screen
after the first character disappears off of the left edge. This sudden appearance is jerky and
unsightly. The solution to this problem has already been built into the hardware. There are three
display options for line widths: the narrow playfield (128 color clocks wide), the normal playfield
(160 color clocks wide) and the wide playfield (192 color clocks wide). These options are set by
setting appropriate bits in the DMACTL register. When using horizontal fine scrolling, ANTIC
automatically retrieves more data from RAM than It displays. For example, if DMACTL is set for
normal playfield, which in BASIC mode 0 has 40 bytes per line, then ANTIC will actually retrieve
data at a rate appropriate to wide playfield --- 48 bytes per line. This will throw lines off horizontally
if it is not taken into account. The problem does not manifest itself if the you have already
organized screen RAM into long horizontal lines as in Figure 6-1.

The corresponding problem for vertical scrolling can be handled in either of two ways. The sloppy
way is to ignore it. Then you will not get half-images at both ends of the display. Instead, the
images at the bottom of the display will not scroll in properly; they will suddenly pop into view. The
proper way takes very little work. To get proper fine scrolling into and out of the display region you
must dedicate one mode line to act as a buffer. You do this by refraining from setting the vertical
scroll bit in the display list instruction of the last mode line of the vertically scrolled zone. The
window will now scroll without the unpleasant jerk. The screen image will be shortened by one
mode line. An advantage of scrolling displays now becomes apparent. It is quite possible to create
screen images that have more than 192 scan lines in the display. This could be disastrous with a
static display, but with a scrolling display images which are above or below the displayed region
can always be scrolled into view.

Fine scrolling will only scroll so far. The vertical limit for fine scrolling is 16 scan lines; the
horizontal limit for fine scrolling is 16 color clocks. If you attempt to scroll beyond these limits,
ANTIC simply ignores the higher bits of the scroll registers. To get full fine scrolling (in which the
entire screen smoothly scrolls as far as you wish) you must couple fine scrolling with coarse
scrolling. To do this, first fine scroll the image, keeping track of how far it has been scrolled. When
the amount of fine scrolling equals the size of the pixel, reset the fine scroll register to zero and
execute a coarse scroll. Figure 6-2 illustrates the process.

            Figure 6-2 Linking Fine Scroll to Coarse Scroll 

The following program illustrates simple fine scrolling:

            1 HSCROL=54276
            2 VSCROL=54277
            10 GRAPHICS 0:LIST
            20 DLIST=PEEK(560)+256*PEEK(561)
            30 POKE DLIST+10,50:REM Enable both scrolls
            40 POKE DLIST+11,50:REM Do it for two mode lines
            50 FOR Y=O TO 7
            60 POKE VSCROL,Y:REM Vertical scroll



43Scrolling

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            70 GOSUB 200:REM Delay
            80 NEXT Y
            90 FOR X=0 TO 3
            100 POKE HSCROL,X:REM Horizontal scroll
            110 GOSUB 200:REM Delay
            120 NEXT X
            130 GOTO 40
            200 FOR J=1 TO 200
            210 NEXT J:RETURN 

This program shows fine scrolling taking place at very slow speed. it demonstrates several
problems that arise when using fine scrolling. First, the display lines below the scrolled window are
shifted to the right. This is due to ANTIC's automatically retrieving 48 bytes per line instead of 40.
The problem arises only in unrealistic demonstration programs such as this one. In real scrolling
applications, the arrangement of the screen data (as shown in Figure 6-1) precludes this problem.
The second, more serious problem arises when the scroll registers are modified while- ANTIC is in
the middle of its display process. This confuses ANTIC and causes the screen to jerk. The solution
is to change the scroll registers only during vertical blank periods. This can only be done with
assembly language routines. Thus, fine scrolling normally requires the use of assembly language.

APPLICATIONS OF SCROLLING
The applications of full fine scrolling for graphics are numerous. The obvious application is for
large maps that are created with character graphics. Using BASIC Graphics mode 2, 1 have
created a very large map of Russia which contains about 10 screenfuls of image. The screen
becomes a window to the map. The user can scroll about the entire map with a joystick. The
system is very memory efficient; the entire map program plus data plus display list and character
set definitions requires a total of about 4K of RAM.

There are many other applications of this technique. Any very large image that can be drawn with
character graphics is amenable to this system. (Scrolling does not require character graphics. Map
graphics are less desirable for scrolling applications because of their large memory requirements.)
Large electronic schematics could be presented in this way. The joystick could be used both to
scroll around the schematic and to indicate particular components that the user wishes to address.
Large blueprints or architectural diagrams could also be displayed with this technique. Any big
image that need not be seen in Its entirety can be presented with this system.

Large blocks of text are also usable here, although it might not be practical to read continuous
blocks of text by scrolling the image. This system is more suited to presenting blocks of
independent text. One particularly `exciting idea is to apply this system to menus. The program
starts by presenting a welcome sign on the screen with signs indicating submenus pointing to other
regions of the larger image. "This way to addition" could point up while "this way to subtraction"
might point down. The user scrolls around the menu with the joystick, perusing his options. When
he wishes to make a choice, he places a cursor on the option and presses the red button.
Although this system could not be applied to all programs, it could be of great value to certain
types of programs.

There are two "blue sky" applications of fine scrolling which have not yet been fully explored. The
first is selective fine scrolling, in which different mode lines of the display have different scroll bits
enabled. Normally you would want the entire screen to scroll, but it is not necessary, to do so. You
could select one line for horizontal scrolling only, another line for vertical scrolling only, and so
forth. The second blue sky feature is the prospect of using display list interrupts to change the
HSCROL or VSCROL registers on the fly. However, changing VSCROL on the fly is a tricky
operation; it would probably confuse ANTIC and produce undesirable results. Changing HSCROL
is also tricky but might be easier. 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Sound

Chapter

VII



45Sound

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

7 Sound

SOUND
The ATARI 400/800TM Home Computers have extensive hardware sound capabilities. There are
four independently controllable sound channels, all able to play simultaneously. Each channel has
a frequency register determining the note, and a control register regulating the volume and the
noise content. Several options allow you to insert high- pass filters, choose clock bases, set
alternate modes of operation, and modify polynomial counters.
DEFINITION OF TERMS AND CONVENTIONS
For the purposes of this discussion, a few terms and conventions need to be clarified:

1 Hz (Hertz) is 1 pulse per second
1 KHz (kilo-Hertz) is 1,000 pulses per second
1 MHz (mega-Hertz) is 1,000,000 pulses per second

A "pulse" is a sudden voltage rise followed somewhat later by a sudden voltage drop. If a pulse is
sent to the television speaker, it will be heard as a single pop.

A "wave" as used here is a continuous series of pulses. There are different types of waves,
distinguished by the shape of the individual pulses. Waves created by the ATARI Computer are
square waves (as in Figure 7-2). Brass instruments typically produce triangle waves, and a singer
produces sine waves (depicted in Figure 7-15).

A shift register is like a memory location (in that it holds binary data) that, when so instructed, shifts
all its bits to the right one position; i.e., bit 5 will get whatever was in bit 4, bit 4 will get whatever
was In bit 3, etc. Thus, the rightmost bit is pushed out, and the leftmost bit assumes the value on
its input wire (see Figure 7-1).

            Figure 7-1 Diagram of Bit Flow of a Shift Register 

AUDF1-4 is to be read, "any of the audio frequency registers, 1 through 4." Their addresses are:
$D200, $D202, $D204, $D206 (53760, 53762, 53764, 53766).

AUDC1-4 is to be read, "any of the audio control registers, 1 through 4." Their addresses are:
$D201, $D203, $D205, $D207 (53761, 53763, 53767).

For the purposes of this discussion, frequency is a measure of the number of pulses in a given
amount of time; 1 e., a note with a frequency of 100 Hz means that in one second, exactly 100
pulses will occur. The more frequent (hence the term. "frequency") the pulses of a note, the higher
the note. For example, a singer sings at a high frequency (perhaps 5 KHz), and a cow moos at a
low frequency (perhaps 100 Hz). The words "frequency," "note," "tone," and "pitch" are used
interchangeably.

"Noise" and "distortion" are used interchangeably although their meanings are not the same.
"Noise" is a more accurate description of the function performed by the ATARI Computer.

The 60-Hz interrupt referred to later in this section is also called the vertical blank interrupt.



46 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

All examples are in BASIC unless otherwise stated. Type the examples exactly as they appear. If
there are no line numbers, don't use any; and if several statements are on the same line, type
them as such.

SOUND HARDWARE
Sound is generated in the ATARI computer by the POKEY chip, which also handles the serial 1/0
bus and the keyboard. The POKEY chip must be initialized before it will work properly. Initialization
is required after any serial bus operation (cassette, disk drive, printer, or RS-232 read/ write). To
initialize POKEY in BASIC, execute a null sound statement; i.e., SOUND 0,0,0,0. In machine
language, store a 0 at AUDCTL ($D208 = 53768), and a 3 at SKCTL ($D20F = 53775, shadowed
at $232 = 562).

AUDF1-4
Each audio channel has a corresponding frequency register that controls the note played by the
computer. The frequency register contains the number `IN" used in a divide-by-N circuit. This
divide is not a division in the mathematical sense, but rather something much simpler: for every N
pulses coming in, 1 pulse goes out. For example, Figure 7-2 shows a divide-by-4 function:

            Figure 7-2 Divide-by-4 Operation 

As N gets larger, output pulses will become less frequent, making a lower frequency note.

AUDC1-4
Each channel also has a corresponding control register. These registers allow the volume and
distortion content of each channel to be set. The bit assignment for AUDC1-4 is as follows:

            AUDC1-4
            Bit number 1 2 3 4 5 6 7 8
                           ---distortion---  --vol--  ---------volume-------
                                             --only-

            Figure 7-3 AUDC1-4 Bit Assignment 

Volume
The volume control for each audio channel is straightforward. The lower 4 bits of the audio control
register contain a 4-bit number that specifies the volume of the sound. A zero in these bits means
zero volume, and a 15 means as loud as possible. The sum of the volumes of the four channels
should not exceed 32, since this forces overmodulation of the audio output. The sound produced
tends to actually lose volume and assume a buzzing quality.

Distortion
Figure 7-3 shows that each channel also has three distortion control bits in its audio control
register. Distortion is used to create special sound effects any time a pure tone is undesirable.

The computer's use of distortion offers great versatility and controllability. It is easy to synthesize of
an almost endless variety of sounds, from rumbles, rattles, and squawks to clicks, whispers, and
mood setting background tempos.

Distortion as used here is not equivalent to the standard interpretation. For example,
"intermodulation distortion" and "harmonic distortion" are quality criteria specified for high-fidelity



47Sound

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

stereo systems. These types of distortion refer to waveform degeneration, where the shape of the
wave is slightly changed due to error in the electronic circuitry. The computer's distortion does not
alter waves (they are always square waves), but rather deletes selected pulses from the waveform.
This technique is not adequately characterized by the word "distortion." A more descriptive and
appropriate term for these distortion methods is. "noise".

Before you can fully grasp what we mean by distortion, you must understand polynomial counters
(poly-counters). Poly counters are employed in the ATARI Computer as a source of random pulses
used in noise generation. The ATARI Computer's poly-counters utilize a shift register working at
1.79 MHz. The shift register's contents are shuffled and fed back into the input; this produces a
semi-random sequence of bits at the output of the shift register.

For example, in the diagram below, the old value of bit 5 will be pushed out of the shift register to
become the next output pulse, and bit 1 will become a function of bits 3 and 5:

            Figure 7-4 5-Bit Poly-Counter 

The bit processor gets values from certain bits in the shift register (bits 3 and 5 above), and
processes them in a way irrelevant to this discussion. It yields a value that becomes bit 1 of the
poly-counter's shift register.

These poly-counters are not truly random because they repeat their bit sequence after a certain
span of time. As you might suspect, their repetition rate depends upon the number of bits in the
poly-counter; i.e., the longer ones require many cycles before they repeat, while the shorter ones
repeat more often.

On the ATARI Computer, distortion is achieved by using random pulses from these poly-counters
in a selection circuit. This circuit is actually a digital comparator, but "selection circuit" is more
descriptive. The only pulses making it through the selection circuit to the output are those
coinciding with a random pulse. Various pulses from the input are thereby eliminated in a random
fashion. Figure 7-5 illustrates this selection method. A dotted line connects pulses that coincide.



48 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 7-5 Selection Function Used To Mix In Distortion 

The net effect is this: some pulses from the frequency divider circuit are deleted. Obviously, If
some of the pulses are deleted, the note will sound different. This Is how distortion is introduced
into a sound channel.

Because poly-counters repeat their bit sequences, their output pattern of pulses is cyclic. And
since the selection circuit uses this output pattern to delete pulses from the original note, the
distorted note will contain the same repetitious pattern. This allows the hardware to create noises
such as drones, motors, and other sounds having repetitive patterns.

The ATARI Computer is equipped with three poly-counters of different lengths, which can be
combined in many ways to produce interesting sound effects. The smaller poly-counters (4 and 5
bits long) repeat often enough to create droning sounds that rise and fall quickly; while the larger
poly- counter (17 bits long) takes so long to repeat that no pattern to the distortion can be readily
discerned. This 17-bit poly-counter can be used to generate explosions, steam, and any sound
where random crackling and popping is desired. It is even Irregular enough to be used to generate
white noise (an audio term meaning a hissing sound).

Each audio channel offers six distinct combinations of the three poly- counters:

            Notes:
            "Clock" means the input frequency
            An "X" means, "it doesn't matter if this bit is set or not."

            Figure 7-6 Available Poly-Counter Combinations 

These upper AUDC1-4 bits control three switches in the audio circuit as shown below. This
diagram will help you understand why the table of Figure 7-6 is structured as it is:



49Sound

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 7-7 AUDC1-4 Block Diagram 

Each combination of the poly-counters offers a unique sound. Furthermore, the distorted sounds
can sound quite different at different frequencies. For this reason some trial and error is necessary
to find a combination of distortion and frequency that produces the desired sound effect. Below is a
table of guides, just to get you started:

            Figure 7-8 Sounds Produced by Distortion Combinations at Several Frequencies 

Volume Only Sound
Bit 4 of AUDC1-4 specifies the volume only mode. When this bit is set, the volume value in
AUDC1-4 bits 0-3 is sent directly to the television speaker; it is not modulated with the frequency
specified in the AUDF1- 4 registers.

To fully understand the use of this mode of operation, you must understand how a speaker works
and what happens to the television speaker when it receives a pulse. Any speaker has a cone that
moves in and out. The cone's position at any time is directly proportional to the voltage it is
receiving from the computer at that time. If the voltage sent is zero, then the speaker is in the
resting position. Whenever the cone changes position, it moves air that is detected by your ear as
sound.

From our definition of a pulse, you know that it consists of a rising voltage followed by a falling
voltage. If you were to send the speaker a pulse, it would push out with the rising voltage and pull
back with the falling voltage, resulting in a wave of air that can be detected by your ear as a pop.
The following statements will produce such a pop on the television speaker by sending a single
pulse:

            POKE 53761,31:POKE 53761,16 

A stream of pulses (or wave) would set the speaker into constant motion, and a continuous buzz or



50 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

note would be heard. The faster the pulses are sent, the higher the note. This is how the computer
generates sound on the television speaker.

It is essential to note that in the volume only mode the volume sent does not drop back to zero
automatically, but rather remains constant until the program changes it. The program should
modulate the volume often enough to create a noise. Now try the following statements, listening
carefully after each:

            POKE 53761,31
            POKE 53761,31 

The first time you heard a pop, which is as expected. The speaker pushed out and moved air. But
the second time you didn't. This is because the speaker cone was already In the extended
position; another extension command did nothing to the speaker, moving no air, so you heard
nothing. Now try this:

            POKE 53761,16
            POKE 53761,16 

Just as before, you heard a pop the first time as the speaker moved back to its resting position,
and you heard nothing the second time because the speaker was already in the resting position.

Thus, the volume only bit gives the program complete control over the position of the speaker at
any time. Although the examples given above are only binary examples (either on or off), you are
by no means limited to this type of speaker modulation. You may set the speaker to any of 16
distinct positions.

For example, a simple triangle wave (similar to the waveform produced by brass instruments)
could be generated by sending a volume of 8 followed by 9, 10, 11, 10, 9, 8, 7, 6, 5, 6, 7, and back
to 8, and repeating this sequence over and over very rapidly. By changing the volume quickly
enough, virtually any waveform can be created. It is feasible, for example, to perform voice
synthesis using this technique. It requires the use of assembly language. There is more discussion
of this bit in a later section.
AUDCTL
In addition to the independent channel control bytes (AUDC1-4), there is an option byte (AUDCTL)
affecting all four channels. Each bit in AUDCTL is assigned a specific function:

            Figure 7-9 AUDCTL Bit Assignment 

Clocking
Before proceeding with the explanations of the AUDCTL options, a new concept must be
explained: clocking. In general, a clock is a train of pulses used to synchronize the millions of
internal operations occurring every second in any computer. The central clock pulses continuously,
each pulse telling the circuitry to perform another step in its operations. You may remember that a
divide-by-N frequency divider outputs one pulse for every Nth input pulse. You may have wondered
where the input pulses come from. There is one main input clock running at 1.79 MHZ; it can
provide the input pulses. There are also several secondary clocks that can be used as input



51Sound

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

clocks. The AUDCTL register allows you to select which clock is used as the input to the
divide-by-N circuit. If you select a different input clock, the output from the frequency divider will
change drastically.

For example, imagine that you are using the 15 KHz clock, and the frequency register is set to
divide by 8. The rate of output pulses from the divide-by-N circuit would be about 2 KHz. But if you
changed the selection of clocks to get the 64 KHz clock and did not change the frequency register,
then what would happen? The divide-by-N would still be putting out one pulse for every 8th input
pulse, but the input rate would be 64 KHz. The result is an output frequency (from the divide- by-N)
of 8 KHz.

The formula for the output frequency (from the divide-by-N) is quite simple:

clock output frequency = clock / N

Setting bit 1 of the AUDCTL register switches from the 64-KHz clock to the 15 KHz clock. It is
important to note that if this bit is set, every sound channel clocked with the 64 KHz clock will
instead use the 15 KHz clock. Similarly, by setting bits 5 or 6, you can clock channels 3 or 1,
respectively, with 1.79 MHz. This will produce a much higher note, as demonstrated with the
following example:

            SOUND 0,255,10,8      Turn on channel 1, low tone
            POKE 53768,64         Set AUDCTL bit 6 

16-Bit Frequency Options
The eight bits of resolution in the frequency control registers seems to provide more than adequate
resolution for the task of selecting any desired frequency. There are, however, situations in which
eight bits are inadequate. Consider for example what happens when we execute the following
statements:

            FOR 1=255 TO 0 STEP -1:SOUND 0,1,10,8:NEXT I 

The sound initially rises smoothly, but as it approaches the end of its range the frequency takes
larger and larger steps which are noticeably clumsy. This is because we are dividing the clock by
smaller and smaller numbers. 15 KHz divided by 255 is almost the same as 15 KHz divided by
254; but 15 KHz divided by 2 is very far from 15 KHz divided by 1. The only way to solve this
problem is to use a larger number that allows us to specify our frequency with greater precision.
The means to do this is built into POKEY.

AUDCTL bits 3 and 4 allow two channels to be joined, creating a single channel with an extended
dynamic frequency range. Normally, each channel's frequency divider number can range from 0 to
255 (8 bits of divide-by-N capability). Joining two channels allows a frequency range of 0 to 65535
(16 bits of divide-by-N capability). In this mode, it Is possible to reduce the output frequency to less
than one Hertz. The following program uses two channels in the 16-bit mode, and two paddles as
the frequency inputs. Insert a set of paddles into port 1, type in and run the following program:

            10 SOUND 0,0,0,0                         Initialize sound
            20 POKE 53768,80                         Clock ch1 w 1.79 MHz, clock ch2 w ch1
            30 POKE 53761,160:POKE 53763,168         Turn off ch1, turn on ch2 (pure
tones)
            40 POKE 53760,PADDLE(0):POKE 53762,PADDLE(l)
            50 GOTO 40                               set paddles to put freqs in freq
regs 

The right paddle tunes the sound coarsely, and the left paddle finely tunes the sound between the
coarse increments.

This program first sets bits 4 and 6 of AUDCTL which means, "clock channel 1 with 1.79 MHz, and
join channel 2 to channel 1." Once this happens, the 8-bit frequency registers of both channels are
assumed to represent a single 16-bit number N, used to divide the input clock. Next, channel 1's
volume is set to zero. Since channel 1 no longer has its own direct output, its volume setting is
meaningless to us and we zero it. Channel 1's frequency register is used as the fine or low byte In
the sound generation, and channel 2's frequency register is the coarse or high byte. For example,
pokeing a 1 into channel 1's frequency register makes the pair divide by 1. Pokeing a 1 into



52 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

channel 2's frequency register makes the pair divide by 256. And pokeing a 1 into both frequency
registers makes the pair divide by 257.

Bit 3 of AUDCTL can be used to join channel 4 to channel 3 in precisely the same way.

The following instructions demonstrate some interesting aspects of 16- bit sound.

            SOUND 0,0,0,0
            POKE 53768,24
            POKE 53761,168
            POKE 53763,168
            POKE 53765,168
            POKE 53767,168
            POKE 53760,240:REM try pokeing other numbers into these next 4 locations
            POKE 53764,252
            POKE 53762,28
            POKE 53766,49 

High-Pass Filters
AUDCTL bits 1 and 2 control high-pass filters in channels 2 and 1 respectively. A high-pass filter
allows only higher frequencies to pass through. In the case of these high-pass filters, high
frequencies are defined to be anything higher than the output of another channel selected by the
AUDCTL bit combination. For example, if channel 3 Is playing a cow's moo, and AUDCTL bit 2 is
set, then only sounds with frequencies higher than the moo will be heard on channel 1 (anything
lower than the "moooo" will be filtered out):

            Figure 7-10 The Effect of a High-Pass Filter Inserted in Channel 1 and Clocked by Channel
3 

The filter is programmable in real time since the filtering channel can be changed on the fly. This
opens a large field of possibilities to the programmer. The filters are used mostly to create special
effects. Try the following statements:

            SOUND 0,0,10,0
            POKE 53768,4
            POKE 53761,168:POKE 53765,168
            POKE 53760,254:POKE 53764,127 

9-Bit Polynomial Conversion
Bit 7 of AUDCTL turns the 17-bit poly-counter into a 9-bit poly- counter. The shorter the
poly-counter, the more often its distortion pattern repeats, or the more discernible the pattern in the
distortion. Therefore, changing the 17-bit poly counter into a 9- bit poly counter will make the noise
pattern more repetitious and more discernible. Try the following demonstration of the 9-bit poly
counter option, listening carefully when the POKE is executed:

            SOUND 0,80,8,8       Use the 17-bit poly



53Sound

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            POKE 53768,128       Change to the 9-bit poly 

SOUND GENERATION SOFTWARE TECHNIQUES

There are two basic ways to use the ATARI Computer sound system: static and dynamic. Static
sound generation is the simpler of the two; the program sets a few sound generators, turns to
other activities for a while, and then turns them off. Dynamic sound generation is more difficult; the
computer must continuously update the sound generators during program execution. For example:

            Static Sound Dynamic Sound
            SOUND 0,120,8,8 FOR X=0 TO 255
              SOUND 0,X,8,8
            NEXT X

Static Sound
Static sound is normally limited to beeps, clicks, and buzzes. There are exceptions. Two examples
are the programs given as special effects in the sections on high-pass filters and 16 bit sound.
Another way to obtain interesting effects is to use interference, as in this example:

            SOUND 0,255,10,8
            SOUND 1,254,10,8 

The strange effect is a result of closely phased peaks and valleys. Examine Figure 7-11. It shows
two channels independently running sine waves at slightly different frequencies, and their sum.
The sum curve shows the strange interference pattern created when these two channels are
added.



54 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 7-11 Two Sine Waves at Different Frequencies and Their Sum 

Figure 7-11 shows that at some points in time the waves are assisting each other, and at other
points, they interfere with each other. Adding the volumes of two waves whose peaks coincide will
yield a wave with twice the strength or volume. Similarly adding the volumes of two waves while
one is at maximum and the other is at minimum will result In a cancellation of both of them. On the
graph of the sum curve, we can see this effect. Toward the ends of the graph, volume Increases
since both channels' peaks and valleys are close together, almost doubling the sound. Toward the
middle of the graph, the waves oppose each other and the resulting wave Is flat. An Interesting
project might be writing a program to plot interaction patterns of 2, 3, and 4 channels as in Figure
7-11. You might discover some unique sounds.

The slighter the difference in frequency between the two channels, the longer the pattern of
repetition. To understand this, draw some graphs similar to Figure 7-11 and study the Interaction.
As an example, try the following statements:

            SOUND 0,255,10,8
            SOUND 1,254,10,8
            SOUND 1,253,10,8
            SOUND 1,252,10,8 

As the difference in frequency grows, the period of repetition decreases.
Dynamic sound
More complex sound effects normally require the use of dynamic sound techniques. Three
methods of dynamic sound generation are available to the ATARI 400/800 programmer: sound in



55Sound

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

BASIC, 60-Hz Interrupt sound, and sound in machine code.
BASIC Sound
BASIC is somewhat limited in its handling of sound generation. As you may have noticed, the
SOUND statement kills any special AUDCTL setting. This problem can be avoided by poking
values directly Into the sound registers rather than using the SOUND statement.

In addition, BASIC is limited on account of its speed. If the program is not completely dedicated to
sound generation, there Is seldom enough processor time to do more than static sound or choppy
dynamic sound. The only alternative is to temporarily halt all other processing while generating
sound.

Another problem can occur when using the computer to play music on more than one channel. If
all four channels are used, the time separation between the first sound statement and the fourth
can be substantial enough to make a noticeable delay between the different channels.

The following program presents a solution to this problem:

            10 SOUND 0,0,0,0:DIM SIMUL$(16)
            20 RESTORE 9999:X=1
            25 READ Q:IF Q<>-1 THEN SIMUL$(X)=CHR$(Q):X=X+1:GOTO 25
            27 RESTORE 100
            30 READ F1,C1,F2,C2,F3,C3,F4,C4
            40 IF F1=-1 THEN END
            50 X=USR(ADR(SIMUL$),Fl,Cl,F2,C2,F3,C3,F4,C4)
            55 FOR X=0 TO 150:NEXT X
            60 GOTO 30
            100 DATA 182,168,0,0,0,0,0,0
            110 DATA 162,168,182,166,0,0,0,0
            120 DATA 144,168,162,166,35,166,0,0
            130 DATA 128,168,144,166,40,166,35,166
            140 DATA 121,168,128,166,45,166,40,166
            150 DATA 108,168,121,166,47,166,45,166
            160 DATA 96,168,108,166,53,166,47,166
            170 DATA 91,168,96,166,60,166,53,166
            999 DATA -1,0,0,0,0,0,0,0
            9000 REM
            9010 REM
            9020 REM this data contains the machine lang. program,
            9030 REM and is read into SIMUL$
            9999 DATA 104,133,203,162,0,104,104,157,0,210,232,228,203,208,246,96,-1 

In this program, SIMUL$ is a tiny machine language program that pokes all four sound channels
very quickly. A BASIC program using SIMUL$ can rapidly manipulate all four channels. Any
program can call SIMUL$ by putting the sound register values inside the USR function in line 50 of
the demonstration program. The parameters should be ordered as shown, with the control register
value following the frequency register value, and repeating this ordering one to four times, once for
each sound channel to be set.

As a speed consideration as well as a convenience, SIMUL$ allows you to specify sound for less
than four channels; I.e., 1, 2, and 3 or 1 and 2, or just channel 1. Simply don't put the unused
parameters inside the USR function.

SIMUL$ offers another distinct advantage to the BASIC programmer. As mentioned earlier, the
AUDCTL register is reset upon execution of any SOUND statement in BASIC. However, using
SIMUL$, no SOUND statements are executed, and thus the AUDCTL setting is retained.

There is another, but impractical, method of sound generation in BASIC. This method uses the
volume-only bit of any of the four audio control registers. Type in and run the following program:

            SOUND 0,0,0,0
            10 POKE 53761,16:POKE 53761,31:GOTO 10 

This program sets the volume-only bit in channel 1 and modulates the volume from 0 to 15 as fast
as BASIC can. This program uses all of the processing time available to BASIC, yet it produces
only a low buzz.
60-Hz Interrupt
This technique is probably the most versatile and practical of all methods available to the ATARI



56 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Computer programmer.

Precisely every 60th of a second, the computer hardware automatically generates an interrupt.
When this happens, the computer temporarily leaves the mainline program, (the program running
on the system; i.e., BASIC, STAR RAIDERS'"). It then executes an interrupt service routine, which
is a small routine designed specifically for servicing these interrupts. When the interrupt service
routine finishes, it executes a special machine language instruction that restores the computer to
the interrupted program. This all occurs in such a way (if done properly) that the program
executing is not affected, and in fact has no idea that it ever stopped!

The interrupt service routine currently resident on the ATARI 400/800 Computer simply maintains
timers, translates controller information, and performs miscellaneous other chores requiring
regular attention.

Before the interrupt service routine returns to the mainline program, it can be made to execute any
user routine; i.e., your sound generation routine. This is ideal for sound generation since the timing
is precisely controlled, and especially since another program can be executing without paying heed
to the sound generator. Even more impressive is its versatility. Because it is a machine language
program, the interrupt sound program will lend itself equally well to a mainline program written in
any language - BASIC, assembler, FORTH, PASCAL. In fact, the sound generator will require few,
if any, modifications to work with another program or even another language.

A table-driven routine offers maximum flexibility and simplicity for such a purpose. "Table-driven"
refers to a type of program that accesses data tables in memory for its information. In the case of
the sound generator, the data tables would contain the frequency values and possibly the audio
control register values. The routine would simply read the next entries in the data table, and put
them into their respective audio registers. Using this method, notes could change as often as 60
times per second, fast enough for most applications.

Once such a program has been written and placed in memory (say, at location $600), you need to
install it as a part of the 60-Hz interrupt service routine. This is accomplished by a method known
as vector stealing.

Memory locations $224,$225 contain the address of a small routine called XITVBL (eXIT Vertical
BLank Interrupt service routine). XITVBL is designed to be executed after all 60- Hz Interrupt
processing is complete, restoring the computer to the mainline program as previously discussed.

The procedure to Install your sound routine Is as follows:

1. Place your program in memory. 2. Verify that the last Instruction executed Is a JMP $E462
($E462 is XITVBL, so this will make the main-line program continue). 3.Load the x register with the
high byte of your routine's address (a 6 in this case). 4.Load the y register with the low byte of your
routine's address (a 0 in this case). 5. Load the accumulator with a 7. 6. Do a JSR $E45C (to set
locations $224,$225). Steps 3-6 are all required to change the value of $224,$225 without error.
The routine called Is SETVBV (SET Vertical Blank Vectors), which will simply put the address of
your routine into locations $224,$225. Once installed, the system will work as follows when an
Interrupt occurs:

1. The computer's Interrupt routine is executed. 2.It jumps to the program whose address is in
$224,$225, which is now your routine. 3. Your routine executes. 4. Your routine then jumps to
XITVBL. 5. XITVBL restores the computer and makes It resume normal operation.

If you do not wish to Implement such a program yourself, there is one available from the Atari
Program Exchange. The package is called INSOMNIA (Interrupt Sound Initializer/Alterer). It allows
creation and modification of sound data while you listen. It is accompanied by an interrupt sound
generator that Is table driven and compatible with any language.
Machine-Code Sound Generation
Direct control of sound registers with mainline machine language opens new doors in sound
generation. The technique is as follows: write a program similar to the 60-Hz interrupt routine in
that it is table-driven, but now the mainline routine is dedicated to sound generation. By expending
much more processor time on sound generation, you can produce higher quality sounds.



57Sound

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Consider, for example, the output of a typical 60 Hz music routine:

            Figure 7-12 Example of 3 Music Notes Played With a 60 Hz Interrupt Music Routine 

Since much more processing time is available with mainline machine language, we can change
the frequency at very high speed during the note's playing time so that it simulates an instrument.
For example, suppose we discovered that whenever any piano key is struck it produces a
characteristic sequence of frequencies, as shown in Figure 7-13.

            Figure 7-13 Graph of Frequency Sequence for a Piano Note 



58 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Let's call the above graph the "piano envelope". To simulate a piano, the idea would be to very
quickly apply the piano envelope to the plain vanilla beep. The note is thus slightly modified during
its playing time. For example, a piano simulation of the 3 notes in Figure 7-12 would look like this:

            Figure 7-14 Example of the 3 Notes of Figure 7.10 Played With a Piano Envelope 

We have essentially the same sound produced by the standard music routine of Figure 7-12, only
the notes now have a piano tone, and sound much prettier than just the flat beeps. Unfortunately,
we had to sacrifice all other processing to get that piano tone. The sound channel Is no longer
updated only once every note, but perhaps 100 times within the note's duration.
Volume only sound
Earlier we experimented with the AUDC1-4 volume only bits, but discovered that they weren't of
much use in BASIC. This was due entirely to the fact that BASIC Is too slow to effectively use
them. This is not the case with machine language.

As mentioned earlier, this bit offers a tremendous capacity for accurate sound reproduction. True
waveform generation (to the time and volume resolution limits of the computer) is made possible
with this bit. instead of just putting a piano flavor into the music, you can now make it closely
replicate a piano sound. Unfortunately, it can never precisely duplicate an instrument. 4 bits (16
values) is not enough volume resolution for truly high-quality work. Nevertheless, the technique
does generate surprisingly good sounds. The following program demonstrates the use of one of
the volume only bits. If you have an assembler, type it in and try it:

                        0100 ;
                        0110 ; VONLY        Bob Fraser 7-23-81
                        0120 ;
                        0130 ;
                        0140 ; volume-only AUDC1-4 bit test routine
                        0150 ;
                        0160 ;
                        0170 ;
                        0180 ;



59Sound

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            D208        0190 AUDCTL =    $D208
            D200        0200 AUDF1  =    $D200
            D201        0210 AUDC1  =    $D201
            D20F        0220 SKCTL  =    $D20F
                        0230 ;
                        0240 ;
            0000        0250        *=   $BO
            00B0 01     0260 TEMPO  .BYTE 1
            00B1 00     0270 MSC    .BYTE 0
                        0280
                        0290
                        0300
            00B2        0310        *=   $4000
            4000 A900   0320        LDA  #0
            4002 8D08D2 0330        STA  AUDCTL
            4005 A903   0340        LDA  #3
            4007 8D0FD2 0350        STA  SKCTL
            400A A200   0360        LDX  #0
                        0370 ;
            400C A900   0380        LDA  #0
            400E 8D0ED4 0390        STA  $D40E     kill vbi's
            4011 800ED2 0400        STA  $D20E     kill irq's
            4014 8B00D4 0410        STA  $D400     kill dma
                        0420
                        0430
                        0440
            4017 BD5240 0450 L00    LDA  DTAB,X
            401A 85B1   0460        STA  MSC
                        0470 ;
            401C BD3640 0480        LDA  VTAB,X
            401F A4B0   0490 L0     LDY  TEMPO
            4021 8D01D2 0500        STA  AUDC1
            4024 88     0510 L1     DEY
            4025 D0FD   0520        BNE  L1
                        0530 ;
                        0540 ; dec most sig ctr
            4027 C6B1   0550        DEC  MSC
            4029 D0F4   0560        BNE  L0
                        0570 ;
                        0580 ;
                        0590 ; new note
                        0600 ;
            402B E8     0610        INX
            402C EC3540 0620        CPX  NC
            402F D0E6   0630        BNE  L00
                        0640 ;
                        0650 ; wrap note pointer
            4031 A200   0660        LDX #0
            4033 F0E2   0670        BEQ L00
                        0680 ;
                        0690 ;
            4035 1C     0700 NC     .BYTE 28      note count
                        0710 ;
                        0720 ; table of volumes to be played In succession
                        0730 VTAB
            4036 18     0740        .BYTE 24,25,26,27,28,29,30,31
            4037 19
            4038 1A
            4039 1B
            403A IC
            403B ID
            403C 1E
            403D IF
            403E 1E     0750        .BYTE 30,29,28,27,26,25,24
            403F 1D
            4040 1C
            4041 1B
            4042 1A
            4043 19
            4044 18
            4045 17     0760        .BYTE 23,22,21,20,19,18,17
            4046 16
            4047 15
            4048 14
            4049 13
            404A 12
            404B 11
            404C 12     0770        .BYTE 18,19,20,21,22,23
            404D 13
            404E 14



60 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            404F 15
            4050 16
            4051 17
                        0780 ;
                        0790 ; this table contains the duration of each entry above
                        0800 DTAB
            4052 01     0810        .BYTE 1,1,1,2,2,2,3,6
            4053 01
            4054 01
            4055 02
            4056 02
            4057 02
            4058 03
            4059 06
            405A 03     0820        .BYTE 3,2,2,2,1,1,1
            405B 02
            405C 02
            405D 02
            405E 01
            405F 01
            4060 01
            4061 01     0830        .BYTE 1,1,2,2,2,3,6
            4062 01
            4063 02
            4064 02
            4065 02
            4066 03
            4067 06
            4068 03     0840        .BYTE 3,2,2,2,1,1
            4069 02
            406A 02
            406B 02
            406C 01
            406D 01

Surprisingly, speed is not really a problem here. The wave has almost 60 steps, and the program
can still be made to play the wave at up to 10 Khz.

Remove lines 400-410, and try the program once more. It will sound quite broken up. The cause is
the 60 Hz interrupt discussed In the previous section. You can actually hear the interrupts taking
pace since all sound stops during that time.

Line 420 disables screen DMA. This is why the screen goes to solid background color when the
program is executed. It serves two purposes: to speed up the processor, and to make the timing
consistent, since DMA steals cycles at odd intervals.

In this demonstration program, the sound created is a sine wave. The wave is remarkably pure,
and does indeed sound like a sine wave. if graphed, the data looks like this:

            15-I            ------
            14-I         ---      ---
            13-I       --            --
            12-I     --                --
            11-I   --                    --
            10-I  -                        -
            9-I -                          -
            8=I-----------------------------------------------------------
            7-I                              -                          -
            6-I                               -                        -
            5-I                                --                    --
            4-I                                  --                --
            3-I                                    --            --
            2-I                                      ---      ---
            1-I                                         ------

            Figure 7-15 Graph of Sine Wave Data for Volume Only Program 

This section has discussed the technical aspects of sound generation with the ATARI Computer.
The programmer must also understand the broader role of sound in the complete software
package.

Movie makers have long understood the importance of mood setting background music. The
recent space adventure movies by George Lucas are excellent examples. When the villain enters



61Sound

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

the room you know immediately to fear and hate him from the menacing background rhythms
accompanying his entry. You gleefully clap your hands when the hero saves the princess while
gallant music plays in the background. Likewise, horror films can frighten you by merely playing
eerie music, even though the action may be completely ordinary.

SPACE INVADERS (trademark of Taito America Corp) issues a personal threat to its player and
victim with its echoing stomp. As the tempo increases, knuckles whiten and teeth grind. When a
Zylon from STAR RAIDERS'" fires a photon torpedo you push frantically on the control to avoid
impact. As it bores straight for your forehead, time slows and you hear it hissing louder and louder
as it approaches. Just before impact, you duck and dislodge yourself from your armchair.

Impressionistic sounds affect our subconscious and our state of mind. This Is due possibly to the
fact that sounds, if present, are continuously entering our mind whether or not we are actively
listening. Visual inputs, on the other hand, require the user's attention. If we are distracted from the
TV set, we cease to concentrate on the picture and the image leaves our mind. Sound therefore
offers the programmer a direct path to the user's mind - bypassing his thought processes and
zeroing in on his emotions. 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The Operating
System

Chapter

VIII



63The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

8 The Operating System

INTRODUCTION
With every ATARI Home Computer System comes an ATARI 10K Operating System Cartridge.
The importance of this cartridge is often overlooked. Without it, you have a lot of potential, but
absolutely nothing else! This situation is not unique to the ATARI Home Computer System; It is
encountered with all computers. A computer is, after all, merely a collection of hardware devices. A
user must manage these resources to accomplish any task. If all programmers had to start from
scratch on each program, we would have an even larger software shortage than we have today.
The solution that has evolved over the years is to build in a program that manages the resources
available to the system, and eases the programming burden required to control them. This
program is known by various names: Operating System, Master Control Program, System
Executive, System Monitor, etc. In the ATARI Home Computer System it is known as the
Operating System or OS.

The first task facing the student of the Operating System, is to take an inventory of exactly what
resources are available to the OS. These are:

            6502 Microprocessor
            RAM Memory (various amounts)
            ANTIC LSI Integrated Circuit
            CTIA LSI Integrated Circuit
            POKEY LSI Integrated Circuit
            PIA Peripheral Interface Adapter Integrated Circuit 

By using these resources, the OS can interact with and control a wide variety of external hardware
devices, including a television receiver/ monitor, keyboard, console speaker, console switches,
joysticks, paddles, cassette recorder, disk drive, printers, RS-232 interface and modem.

The remainder of this subsection briefly lists the main elements of the OS. These elements are
described in detail in following subsections.

MONITOR. The OS monitor is the system routine that is executed when the computer is turned on
or the SYSTEM RESET] button is pressed. Through this routine the OS takes control of the
system; It does not relinquish control unless control is taken away from it by the programmer. The
Monitor sets up the memory management system, initializes the I/O subsystem, sets up system
vectors and selects the execution environment after initialization is complete.

INTERRUPT PROCESSING STRUCTURE. The computer utilizes the standard interrupt
processing structure of the 6502 microprocessor, with some external augmentation for enhanced
flexibility. Interrupts are generated by numerous events, including keyboard keystrokes, the
**BREAK** keystroke, some serial bus events, system timer timeouts, and the vertical blank
interval on the television.

OS SYSTEM VECTORS. The system vectors provide a mechanism that allows users to access
system routines, or customize the OS for special needs. The most frequent uses of the vectors are
to call I/O system routines, set timers, and transfer control to different execution environments.
System routines may be vectored to in one of two ways. ROM vectors are locations that contain
JMP instructions to system routines and cannot be altered. RAM vectors are RAM locations that
contain alterable addresses of system routines. The locations of both types of vectors are
guaranteed to remain the same in future releases of the OS.

INPUT/OUTPUT SUBSYSTEM. The OS gives an application programmer access to the full
capabilities of the computer's peripherals. The Input/Output subsystem is a set of routines that link
high level I/O operations with device handlers that control the physical I/O hardware.

REAL TIME PROGRAMMING. The ATARI Home Computer is well equipped to deal with problems
in the "real time domain". To facilitate this feature, the OS has two types of timers: hardware timers
and system software timers. Hardware timers are countdown timers that can be used to time
events with durations that range from half a microsecond to several seconds. System timers are
software timers that tick at 60 Hertz, and can be used for applications as diverse as serial bus



64 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

timing and sound effect generation.

ROM CHARACTER SET. The computer is equipped with what is known as a "soft character set",
i.e., It can be changed. The ROM-based character set is used to provide a standard character set
at power-up.

FLOATING POINT PACKAGE. The floating point package is a set of mathematical routines that
extend the arithmetic capability of the system. The routines use binary coded decimal (BCD)
arithmetic to provide standard mathematical functions (+, -, *, /), exponential and logarithmic
functions as well as conversion from ATASCII to BCD and BCD to ATASCII.
THE MONITOR
The OS monitor is that portion of the OS ROM that handles both the power-up and SYSTEM
RESET sequences. These sequences allow the OS to gain Initial control of the computer and
ensure that everything is properly initialized before releasing partial control to an application
program. Both sequences are similar in function and in fact share much of the same code.

The power-up routine (also known as Coldstart) is invoked either by turning on the computer or by
jumping to COLDSV ($E477), a system routine vector. Important items to remember about the
power-up sequence are:

         1. ALL of RAM memory is cleared except locations $0000-$000F.

         2. Both a cassette and disk boot are attempted. BOOT? ($0009) is a flag that indicates the
success or failure of the boots. Bit 0 = 1 for a successful cassette boot; Bit 1 = 1 for a successful
disk boot.

         3. COLDST ($0244) is a flag that tells the Monitor that it is in the middle of power-up.
COLDST=0 means the [SYSTEM RESET] key has been pressed, whereas COLDST<>O indicates
initial power-up. The COLDST flag can be used to gain a certain amount of program security. If
COLDST is set to a non-zero value during program execution, then pressing [SYSTEM RESET]
will initiate the power-up sequence. This will prevent the user from gaining control of the computer
while the program is running. 

Pressing the [SYSTEM RESET] key causes a SYSTEM RESET (also known as Warmstart). Some
of the key facts to remember about the SYSTEM RESET sequence are:

         1. The OS RAM vectors are downloaded from ROM during both SYSTEM RESET and
power-up sequences. If you wish to "steal" a vector, some provision must be made to handle
SYSTEM RESET. See the MEMORY MANAGEMENT subsection of this section for suggestions
on how this is done.

         2. MEMLO, MEMTOP, APPMHI, RAMSIZ and RAMTOP are reset during System Reset. If
you wish to alter these RAM pointers to reserve some space for assembler modules called by
BASIC, you must make some provision for handling SYSTEM RESET. Figure 8-3 provides an
example of how to do this. 

The next few pages present a detailed flowchart for the power-up and SYSTEM RESET
sequences.



65The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 8-1.1 System Initialization 



66 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de



67The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 8-1.2 System Initialization 

            Figure 8-1.3 System Initialization 



68 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 8-1.4 System Initialization 



69The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

MEMORY MANAGEMENT
The fact that the OS is written for a 6502 microprocessor dictates a number of overall memory
management decisions. In the 6502, there are three special regions in the memory address space.
Page zero has crucial significance in that the use of data values on this page will result in tighter,
faster executing code. Indeed, there are instructions that absolutely require page zero locations to
work. Page one is special because it is used for the 6502 stack. Addresses $FFFA - $FFFF are
also special because they are reserved for hardware reset and interrupt vectors.

Thus, the first task of memory management is to assign the OS ROM to the highest part of
memory address space. The OS resides in the address space from $D800 to $FFFF. Just under
this area is the space reserved for the hardware registers in ANTIC, CTIA, and POKEY. These
reside in the $D000-$DFFF range.

At the other end of memory address space, the OS reserves half of page zero for its own use.
Pages two, three, four and five are also reserved for OS usage. From a programming viewpoint,
the usable memory area runs from $0600 to $BFFF.

When the system is powered-up, one of the first actions taken by the OS is to determine how
much RAM memory is present. This is accomplished by checking the first byte of each 4K block of
memory starting at $1000. The contents of this byte are read, complemented and an attempt is
made to store the complemented value back out. If this attempt is successful, the temporary
memory size counter is incremented by 4K. This process continues until a location is found that
cannot be changed. Two variables, RAMTOP and RAMSIZ contain the number of RAM pages
present. In addition to these locations, pointers MEMLO, MEMTOP, and APPMHI are maintained
by the OS memory management routines. The relationships between these pointers are shown in
Figure 8-2, a simple memory map.

MEMLO is a 2-byte location that the OS uses to indicate where an application program may begin.
You can modify MEMLO to create reserved areas for assembly language routines that may be
called from BASIC. BASIC uses the value In MEMLO to determine the starting location of a
program (see Section 10 for a discussion of the structure of a BASIC program). If the value of
MEMLO is changed to a higher address, it must be done before control is transferred to the BASIC
cartridge. This is a tricky operation, because MEMLO is reset by both power-up and SYSTEM
RESET.

If an application program is running in a disk drive environment, the AUTORUN.SYS facility can be
used to change MEMLO to reserve space. However, DOS is also initialized during SYSTEM
RESET via the DOSINI vector ($000C). This vector contains the address of the DOS initialization
code called as part of the monitor system initialization. DOSINI is also the only point at which you
can "trap" the SYSTEM RESET sequence. Since the DOS initialization must occur regardless of
what is done to the MEMLO pointer, you must allow the normal initialization to occur before
"stealing" the DOSINI vector. This may be done by moving the contents of DOSINI into the 2-byte
address of a JSR information on the AUTORUN.SYS feature). Just after the JSR instruction, place
the code which sets MEMLO to a new value. Follow this with a RTS instruction. DOSINI must then
be reset to the address of the JSR instruction. When a SYSTEM RESET occurs, the new code
sequence is called and the first instruction, JSR OLDDOSINI, initializes DOS. The remaining code
is then executed which sets MEMLO to its new value and then rejoins the rest of the initialization
sequence. Figure 8-3 presents an example showing how to do this.

The above technique can also be used with MEMTOP, the user high memory pointer. This pointer
indicates the highest RAM address accessible to an application program. This RAM address
differs from the highest physical RAM address because the OS allocates some RAM at the very
top of RAM for its display list and display data. Space for assembly language modules and data
can be set aside by lowering MEMTOP from the values set by power-up and SYSTEM RESET.
Using MEMTOP instead of MEMLO to reserve space does create one problem. The value of
MEMTOP depends on both the amount of RAM in the system and the graphics mode of the
display. This makes it difficult to predict its value before actually examining the location unless you
make assumptions about the system configuration. This uncertainty over the final location of the
machine code forces the programmer to use only relocatable code.

APPMHI is a location that contains an address specifying the lowest address to which the display



70 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

RAM may extend. Correctly setting APPMHI ensures that the display handler will not clobber some
of your program code or data.

RAMSIZ, like MEMTOP, can also be used to reserve space for user routines or data. Since
RAMSIZ is a single byte value that contains the number of RAM pages present (i.e., groups of 256
bytes), lowering its value by 1 will reserve 256 locations. The advantage of using RAMSIZ instead
of MEMTOP is that the space saved by moving RAMSIZ down is above the display memory,
whereas space saved by moving MEMTOP down remains below the display memory.

            Figure 8-2 OS and BASIC Pointers (DOS present) 

                        0010 ; RESET THE MEMLO POINTER
                        0020 ;
            0600        0030 START    =    $600
            000C        0040 DOSINI   =    $0C
            02E7        0050 MEMLO    =    $2E7
            3000        0060 NEWMEM   =    $3000     ; THIS IS THE NEW VALUE FOR MEMLO
                        0065 ;
                        0070 ; THIS ROUTINE RESERVES SPACE FOR ASSEMBLY ROUTINES
                        0090 ; BY RESETING THE MEMLO POINTER. IT RUNS AS
                        0100 ; AN AUTORUN.SYS FILE. IT ALSO RESETS MEMLO ON [RESET].
                        0120 ; MEMLO IS SET TO THE VALUE OF NEWMEM.
                        0130 ;
                        0140 ; THIS PART IS PERMANENT, IE. NEEDS TO BE RESIDENT.
                        0150 ; THE SYSTEM DOSINI VECTOR HAS BEEN STOLEN
                        0160 ; AND STORED IN THE ADDRESS PORTION OF THE JSR TROJAN
                        0170 ; INSTRUCTION. SO WHEN [RESET] IS PRESSED, DOSINI VECTORS
                        0180 ; TO INITDOS, JSR TROJAN THEN CALLS THE DOS INITIALIZATION
                        0185 ; ROUTINES, MEMLO IS RESET TO NEW VALUE AND  CONTROL
                        0190 ; RETURNS TO THE MONITOR.
            0000        0200        *=   START



71The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

                        0210 INITDOS
            0600 200D06 0220        JSR  TROJAN   DO DOS INITIALIZATION
            0603 A900   0230        LDA  #NEWMEM&255
            0605 8DE702 0240        STA  MEMLO
            0608 A930   0250        LDA  #NEWMEM/256
            060A 8DE802 0260        STA  MEMLO+L
                        0270 TROJAN
            060D 60     0280        RTS
                        0290 ; THIS PART IS EXECUTED AT POWER UP ONLY AND
                        0300 ; CAN BE DELETED AFTER POWER-UP.
                        0330 ; THIS ROUTINE STORES THE CONTENTS OF DOSINI INTO THE JSR
                        0350 ; TROJAN INSTRUCTION. IT THEN REPLACES DOSINI WITH
                        0370 ; A NEW VALUE, LOCATION INITDOS.
                        0390 GRABDOSI
            060E A50C   0400        LDA  DOSINI        ; SAVE DOSINI
            0610 8DO106 0410        STA  INITDOS+1
            0613 A50D   0420        LDA  DOSINI+1
            0615 8D0206 0430        STA  INITDOS+2
            0618 A900   0440        LDA  #INITDOS&255  ; SET DOSINI
            061A 850C   0450        STA  DOSINI
            061C A906   0460        LDA  #INITDOS/256
            061E 850D   0470        STA  DOSINI+1
            0620 A500   0480        LDA  NEWMEM&255    ; SET MEMLO
            0622 8DE702 0490        STA  MEMLO
            0625 A930   0500        LDA  #NEWMEM/256
            0627 8DES02 0510        STA  MEMLO+1
            062A 60     0520        RTS
            062B        0530        *=   $2E2
            02E2 0E06   0540        .WORD GRABDOSI     ; SET RUN ADDRESS
            02E4        0550        .END

            Figure 8-3 Reset MEMLO 

INTERRUPT PROCESSING STRUCTURE
The capability to selectively respond to special hardware and software events (i.e. interrupts),
provides enormous flexibility to any computer system. As in any 6502-based system, there are two
types of interrupt requests at the processor level, maskable (IRQ) and nonmaskable (NMI)
interrupts. A higher level of interrupt control is provided by ANTIC, POKEY and the PIA chip. Each
of these chips is responsible for mediating a number of events which could cause interrupts. If a
particular interrupt is enabled at the level of the three guardian chips, then they allow the interrupt
request to pass on to the 6502. ANTIC handles NMI requests, and POKEY and the PIA handle
IRQ requests.

The following interrupt functions are available:

Name (vector) Type Function Used by



72 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

DISPLAY LIST
(VDSLST)
SYSTEM RESET (none)
VERTICAL BLANK
(VVBLKI,VVBLKD)
SERIAL INPUT READY
(VSERIN)
SERIAL OUTPUT
READY (VSEROR)
SERIAL OUTPUT
COMPLETE (VSEROC)
POKEY TIMER 1
(VTIMR1)
POKEY TIMER 2
(VTIMR2)
*POKEY TIMER 4
(VTIMR4)
KEYBOARD (VKEYBD)
*BREAK KEY (BRKKY)
SERIAL BUS
PROCEED (VPRCED)
SERIAL BUS
INTERRUPT (VINTER)

NMI
NMI
NMI
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ

Graphics timing
System init.
Graphics display
Serial input
Serial output
Serial output
Hardware timer
Hardware timer
Hardware timer
Key pressed
[BREAK] key
Device proceed
Device interrupt

User
OS
OS,user
OS
OS
OS
User
User
User
OS
OS
Unused
Unused

            * This IRQ is vectored only in the Rev. B version of the OS 

Section 6 of the OPERATING SYSTEM Manual contains more detailed information on interrupts.
Extreme care needs to be taken in working with interrupts. For example, if you accidentally disable
the keyboard IRQ interrupt, the computer will ignore all the keys except the [BREAK] key. Although
this may be useful sometimes, it may make debugging your program a bit difficult!

The IRQ Interrupt Handler

The OS has an IRQ interrupt handler that processes the various IRQs. This handler has RAM
vectors for all of the IRQs. (Note - the [BREAK] key IRQ is not vectored in the original version of
the OS The IRQ vectors are set to their initial values during both power-up and SYSTEM RESET.
The locations of the IRQ RAM vectors are described in the subsection on System Vectors.

IRQ vector functions are:

VIMIRQ - Immediate IRQ vector. All IRQs vector through this location. VIMIRQ normally points to
the system IRQ handier. You can steal this vector to do your own IRQ Interrupt processing.

VSEROR - Pokey Serial Output Needed IRQ vector. This normally points to the code to provide
the next byte in a buffer to the serial output port.

VSERIN - Pokey Serial Input Ready IRQ vector. This points to the code to place a byte from the
serial input port into a buffer.

VSEROC - Pokey Serial Output Complete IRQ vector. Normally this vector points to code that sets
a transmit done flag after the checksum byte goes out.

VTIMR1 - Pokey Timer 1 IRQ vector. Initialized to point to a PLA,RTI instruction sequence.

VTIMR2 - Pokey Timer 2 IRQ vector. Initialized to point to a PLA,RTI instruction sequence.

VTIMR4 - Pokey Timer 4 IRQ vector. Initialized to point to a PLA,RTI instruction sequence.

VKEYBD - Keyboard IRQ vector. Pressing any key except [BREAK] causes this IRQ. VKEYBD
can be used to preprocess the key code before it is converted to ATASCII by the OS. VKEYBD
normally points to the OS keyboard IRQ routine.



73The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

BRKKY - [BREAK] key vector. In the Rev. B version of the OS, this IRQ has its own vector. It is
initialized to a PLA,RTI instruction sequence.

VPRCED - Peripheral Proceed IRQ vector. The proceed line is available to peripherals on the
serial bus. This IRQ is unused at present and normally points to a PLA,RTI instruction sequence.

VINTER - Peripheral interrupt IRQ vector. The interrupt line is also available on the serial bus.
VINTER normally points to a PLA,RTI instruction sequence.

VBREAK - 6502 BRK instruction IRQ vector. Whenever a software break instruction is executed,
this interrupt occurs. VBREAK can be used to set break points for a debugger, though it normally
points to a PLA,RTI instruction sequence. 

The IRQs are enabled and disabled as a group by the 6502 instructions CLI and SEI respectively.
The IRQs also have individual enable/disable bits in POKEY. The programmer's reference card
provided with this book shows the IRQs and their enable/disable bits.

The IRQEN register contains most of the IRQ enable/disable bits and is a write-only register. The
OS keeps a shadow copy of IRQEN in POKMSK ($0010), but IRQEN is not updated from
POKMSK during vertical blank. Each interrupt is enabled by setting the proper bit in IRQEN to a
one. A zero is placed in a bit in IRQEN to clear interrupt status from that corresponding bit in
IRQST. You might note that bit 3 in IRQST (Serial data transmission is finished) is not cleared by
this process. This bit is simply a status bit and reflects the current status of the serial transmission
register.

PACTL and PBCTL are used to enable and test the status of the IRQs handled by the PIA. Bit 0 of
each of these registers is the interrupt enable for that port. Bit 7 represents the interrupt status.
This bit is cleared whenever the PACTL or PBCTL registers are read.

Using The IRQs

The availability of the IRQ vectors means that you can tailor much of the system I/O to your liking.
Currently, the OS does not provide for overlapping I/O with other processing. By redirecting the
three serial I/ O interrupt vectors however, it is possible to rewrite portions of the I/O subsystem to
allow for true concurrent processing.

The three timer interrupts can be put to use in any operation requiring precise timing control.
These timers would normally be used when the 60-Hertz software timers are too slow. Refer to the
subsection on Real Time Programming for more information on this topic.

Many applications require that programs be protected from user input error. A couple of the IRQ
vectors can be used to provide extended input protection. The example in Figure 8-4 uses the
VKEYBD IRQ vector to disable the control key. The routine also masks the [BREAK] key by
stealing the VIMIRQ vector and ignoring the [BREAK] key interrupt. Though written for the original
version of the OS, this routine will still work in Rev. B.

Two of the IRQs are handled by the PIA, VPRCED and VINTER. These are unused by the OS,
and may be utilized to provide more control over external devices.

            0010        10 POKMSK   =    $0010
            D209        20 KBCODE   =    $D209
            0208        30 VKEYBD   =    $0208
            D20E        40 IRQEN    =    $D20E
            D20E        45 IRQST    =    IRQEN
            0216        46 VMIRQ    =    $0216
            0000        60          *=   $600
            0600 78     80 START    SEI                 DISABLE IRQS
            0601 AD1602 90          LDA     VMIRQ       REPLACE THE IRQ VECTOR
            0604 8D4D06 0100        STA     NBRK+1      WITH OUR OWN
            0607 AD1702 0110        LDA     VMIRQ+1     ALL IRQS WILL
            060A 8D4E06 0120        STA     NBRK+2      GO TO NBRK
            060D A945   0130        LDA     #IRQ&255
            060F 8Dl602 0140        STA     VMIRQ
            0612 A906   0150        LDA     #IRQ/256



74 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            0614 8Dl702 0160        STA     VMIRQ+1
            0617 AD0802 0200        LDA     VKEYBD      POINT KEY IRQ TO
            061B 8D4306 0210        STA     JUMP+1      REP
            061E AD0902 0220        LDA     VKEYBD+1
            0621 8D4406 0230        STA     JUMP+2
            0624 A939   0240        LDA     #REP&255    VECTOR KEY IRQ
            0626 8D0802 0250        STA     VKEYBD      LOW BYTE OF VECTOR
            0629 A906   0260        LDA     #REP/256
            062B 8D0902 0270        STA     VKEYBD+1
            062E 58     0170        CLI                 ENABLE IRQS
            062F 60     0280        RTS
                        0290        *=$639
            0639 AD09D2 0300 REP    LDA                 KBCODE ALL KEY IRQS COME HERE
            063C 2980   0310        AND     #$80        CHECK IF CONTROL HIT
            063E F002   0320        BEQ     JUMP        IF NOT HIT THEN GO
            0640 68     0330        PLA                 ELSE IGNORE CONTROL KEY
            0641 40     0340        RTI
            0642 4C4206 0360 JUMP   JMP                 JUMP THIS CALLS THE OLD KEY IRQ
            0645 48     0375 IRQ    PHA                 ALL IRQS COME HERE
            0646 AD0ED2 0380        LDA     IRQST       CHECK IF [BREAK]
            0649 1004   0390        BPL     BREAK       IF [BREAK] IRQ,BRANCH
            064B 68     0405        PLA                 ELSE CALL OLD IRQ VECTOR
            064C 4C4C06 0410 NBRK   JMP     NBRK        CALL OLD IRQ VECTOR
            064F A97F   0430 BREAK  LDA     #$7F        HERE IF [BREAK]
            0651 8D0ED2 0440        STA     IRQST       SHOW NO [BREAK]
            0654 A510   0450        LDA     POKMSK
            0656 8D0ED2 0460        STA     IRQEN
            0659 68     0462        PLA
            065A 40     0464        RTI                 RETURN AS IF NO [BREAK]
            065B        0470        *=   $02E2
            02E2 0006   0480        .WORD START

            Figure 8-4 Protecting Programs from User Input Error 

The NMI Handler

The OS has an NMI handler for handling the nonmaskable interrupts. Unlike the IRQs, the NMIs
cannot be "masked" (disabled) at the 6502 level. All the NMIs except SYSTEM RESET can be
disabled by ANTIC.

Two of the NMIs, the display list interrupt (DLI) and the vertical blank (VBLANK) interrupt, have
RAM vectors that can be used. In fact, VBLANK can be intercepted in two places, immediate or
deferred VBLANK. The NMI vectors are:

Name Vector
SYSTEM RESET
DISPLAY LIST INTERRUPT
VERTICAL BLANK
   IMMEDIATE
   DEFERRED

none
VDSLST ($0200)

VVBLKI ($0222)
VVBLKD ($0224)

The SYSTEM RESET NMI doesn't have a RAM vector. SYSTEM RESET always results in a jump
to the monitor warmstart routine. However.- the DOSINI RAM vector is used during the Warmstart
process, and thus can be used to trap the [SYSTEM RESET] (see subsection on the Monitor).

The DLI vector is unused by the OS. Refer to Section 5, Display List Interrupts, for details on using
this feature.

Vertical Blank Interrupt Processing

The vertical blank interrupt facility is an extremely valuable resource to a programmer. These
interrupts are nonmaskable and occur at regular intervals based on the television signal standard
(every 60th of a second for NTSC, every 50th for PAL). Just as importantly, these interrupts occur
during that period of time when the screen has been blanked, so that changes made during this
period will not be immediately seen on the display. This leads to a wide assortment of uses.

After a vertical blank interrupt has been recognized by the OS, the contents of the A, X, and Y
registers are placed onto the stack. The system then vectors through the immediate vertical blank



75The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

vector (VVBLKI) located at $0222. This vector normally points to the OS vertical blank interrupt
service routine at $E45F. The OS uses this routine to increment the real time clock, to decrement
the system timers, to do color attracting, to copy shadow registers,. and to update values from the
input controllers. This routine terminates by jumping through the deferred vertical blank vector
(VVBLKD) at $0224. This vector is initialized to point to a simple interrupt termination routine at
$E462. Figure 8-5 illustrates this process.

            Figure 8-5 Vertical Blank Interrupt Execution 

These two vectors were put into RAM to allow programmers to trap the vertical blank service
routine and use the 60-Hertz interrupt for their own purposes. The procedure to use them is
straightforward. First decide whether the vertical blank interrupt (VBI) routine is to be an immediate
VBI or a deferred VBI. In many cases it makes little difference which is chosen. There are some
instances where it does matter. The first case arises when your VBI routine reads or writes to
registers which are shadowed by the OS VBI routine. It might be necessary to write to the
hardware registers after the OS VBI has written to them. He who writes last, writes best!

The second case arises when your VBI routine consumes too much processor time. The OS VBI
routine may then be delayed beyond the end of the vertical blank period. This in turn may cause
some graphics registers to be changed while the beam is tracing on the screen. The result may be
unsightly. if this is the case, your VBI routine should be placed as a deferred VBI routine. The time
limit for immediate VBI is about 2000 machine cycles; for deferred VBI it is about 20,000 cycles.



76 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

However, many of these 20,000 machine cycles are executed while the electron beam is being
drawn, so graphics operations should not be executed in extremely long deferred VBI routines.
Furthermore, display list interrupt execution time comes out of the time available for this
processing. Remember, VBI processing will cut down on the time available for mainline code
execution.

The third case arises when your own VBI must be mixed with time- critical I/O such as to the disk
or cassette. The OS immediate VBI routine has two stages, a critical and a non-critical stage.
During time critical I/O, the OS immediate VBI routine aborts after stage one processing is
complete. if you want your VBI to be executed during every vertical blank period, it must be defined
as an immediate VBI. Be wary in this situation, for this may result in interference problems with
time-critical I/O.

Once you have decided whether your VBI routine should be immediate or deferred, you must place
the routine in memory (page six is a good place), link it to the proper VBI routine, and modify the
appropriate OS RAM vector to point to it. Terminate an immediate VBI routine with a JMP to
$E45F. Terminate a deferred VBI routine with a JMP to $E462. If you want to bypass the OS VBI
routine entirely (and thereby gain processing time), terminate your immediate VBI routine with a
JMP to $E462.

A common problem with interrupts on 8-bit micros arises when you try to change the vector to the
interrupt. Vectors are 2-byte quantities; it takes two store instructions to change them. There is a
small chance that an interrupt will occur after the first byte has been changed but before the
second byte has been updated. This could crash the system. The solution to this problem has
been provided by an OS routine called SETVBV at $E45C. Load the 6502 Y- register with the low
byte of the address, the X-register with the high byte of the address, and the accumulator with a 6
for immediate VBI or a 7 for deferred VBI. Then JSR SETVBV and the interrupt will be safely
enabled. The new VBI routine will begin executing within one 60th of a second.

A wide variety of operations can be performed with 60-Hertz interrupts. First, screen manipulations
can be done during the vertical blank to ensure that transitions do not occur on the screen.
Second, high speed regular screen manipulations can be performed. This can be very important in
rhythmic animations where changes need to occur at a pace independent from other processing.

Another function of vertical blank interrupts is for real-time sound effects. The sound registers in
the ATARI 400/800 allow control of

frequency, volume, and distortion, but not duration. Duration can be controlled with a VBI by having
a calling routine set some duration parameter which the VBI then decrements down to zero. This
technique can be used to control the volume of the sound and so give attack and decay envelopes
to sounds. Finer control of frequency and distortion is possible with extensions of this technique.
The result can be very intricate sound effects. Since the VBI time resolution is only 1/60th of a
second, VBls are not useful for the volume only mode of the audio channels.

VBls are also useful for handling user inputs. Usually, these inputs require little processing, but
constant attention. A VBI allows the program to check for user input every 60th of a second without
burdening the' program. It is an ideal solution to the problem of maintaining computational
continuity without ignoring the user.

Finally, VBls allow a crude form of multitasking to take place. A foreground program can run under
the VBI while a background program runs in the mainline code. As with any interrupt, careful
separation of the databases for the two programs must be maintained. The power derived from the
vertical blank interrupt is, however, well worth the effort.

THE SYSTEM VECTORS
One measure of the power of any operating system is its adaptability. Just how easy is it for a user
to take advantage of the OS routines or modify and customize system routines?

In this regard, the OS for the ATARI Home Computer System would score well. In practically every
instance where access to system routines could be beneficial, the OS has "hooks" where you can
attach or replace system routines with your own.



77The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

This flexibility is provided by a combination of several different mechanisms. The first of these is a
ROM table of JMP instructions to crucial OS routines. In future versions of the OS, the location of
this Jump table will not change, although the values there probably will. Thus, if your software
accesses the main OS routines via this table, it will also work on future versions of the OS. If your
software does not use these ROM vectors, but instead jumps directly into the OS ROM, then it will
almost certainly crash on future versions of the OS.

The second mechanism is a series of address vectors in RAM which link many of the interrupt
processing routines together. To alter the handling of a particular interrupt, one need change only
a single vector to point to the replacement code. The OS initializes these vectors as part of the
power-up sequence. Again, though the initialized contents of these vectors may change, their
location is guaranteed not to.

The third mechanism is the device handler table where vectors to specific device handlers (e.g.
disk drive, printer,...) are stored. For a discussion of this facility, refer to the Centralized
Input/Output subsection of this section.

Name Location Use
DISKIV
DSKINV
CIOV
SIOV
SETVBV
SYSVBV
XITVBV
SIOINV
SENDEV
INTINV
CIOINV
BLKBDV
WARMSV
COLDSV
RBLOKV
CSOPIV

$E450
$E453
$E456
$E459
$E45C
$E45F
$E462
$E465
$E468
$E46B
$E46E
$E471
$E474
$E477
$E47A
$E47D

Disk handler initialization
Disk handler vector
Central I/O routine vector
Serial I/O routine vector
Set system timers routine vector
System vertical blank
processing
Exit vertical blank processing
Serial I/O initialization
Serial bus send enable routine
Interrupt handler routine
Central I/O initialization
Blackboard mode (Memopad)
vector
Warm start entry point
(SYSTEM RESET)
Cold start entry point (power-up)
Cassette read block routine
vector
Cassette open for input vector

            Figure 8-6 ROM Jump Vectors 

Since this ROM table is actually a table of three byte JUMP instructions, an example of using a
ROM vector is:

            JSR CIOV 

RAM VECTORS



78 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 8-7 RAM Vectors 

Unlike the ROM Jump tables, these vectors are true two byte address vectors. A typical calling
sequence to use one of the RAM vectors might look like this:

                 JSR CALL
            CALL JMP (DOSINI) 

THE CENTRALIZED INPUT/OUTPUT SUBSYSTEM
One of the most taxing problems facing an operating system designer is how to handle
input/output to the wide variety of peripherals that might be hooked up to the system. A few
general philosophical guidelines to efficient I/O handling are:

- The transfer of data should be device-Independent.

- The I/O structure should support single-byte, multiple-byte, and record-organized data transfers.

- Multiple devices/files should be concurrently accessible.

- Error handling should be device-transparent.



79The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

- The addition of new device handlers should be possible without having to change the OS ROM.

The ATARI 400/800 OPERATING SYSTEM (OS) was designed to provide exactly these
capabilities. The ATARI 400/800 OS uses a table- driven centralized input/output subsystem. From
the OS standpoint, I/O is organized around the IOCB, or Input/Output Control Block. An IOCB is a
standard table that specifies one complete input or output operation. Any of eight standard I/O
operations can be executed through an IOCB. By changing an entry in the IOCB, the user can
change the nature of the input/output operation, even the physical device which is the target of the
I/O. Thus, a user can easily perform I/O to completely different devices such as the disk drive and
the printer without having to worry about hardware details. Most I/O requires only that the user set
up an IOCB with control data, and then pass control to the I/O subsystem.

Two types of elements make up the I/O subsystem: I/O system routines and I/O system control
blocks. The I/O system routines include the central I/O routine (CIO), the device handlers (E:, K:,
S:, P:, C:, D:, R:) and the serial I/O routine (SIO). The Handler Address Table (HATABS) plays a
major role in linking CIO with the individual device handlers. The system I/O control blocks contain
control data that is routed to the I/O subsystem. The user interface is the same for all devices
(e.g., the commands to output a line to the printer (P:) or to the display editor (E:) are very similar).

Understanding the structure of the I/O subsystem will enhance your use of it. Figure 8-8 shows the
relationship of the I/O system routines and the I/O system control blocks.



80 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de



81The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 8-8 I/O Subsystem 

I/O System Control Blocks

There are four types of control blocks:

            -Input/Output Control Block (IOCB)
            -Zero-Page I/O Control Block (ZIOCB)
            -Device Control Block (DCB)
            -Command Frame Buffer (CFB) 

The I/O system control blocks are used to communicate information about the I/O function to be
executed. The control blocks provide the I/ O system routines with control information to perform
the I/O function. Refer to the OPERATING SYSTEM Manual for information as to the detailed
structure of the four types of control blocks.

Eight IOCBs in the OS are used to effect communication between user programs and CIO. Figure
8-9 shows the content of an IOCB for some common

I/O functions. The IOCBs are:

            Name   Location,
                 Length  
            IOCB0  [$340,16]
            IOCB1  [$350,16]
            IOCB2  [$360,16]
            IOCB3  [$370,16]
            IOCB4  [$380,16]
            IOCB5  [$390,16]
            IOCB6  [$3A0,16]
            IOCB7  [$3B0,16]

A second type of control block, the ZIOCB [$0020,16], is used to communicate I/O control data
between CIO and the device handlers. When called, CIO uses the value contained in the
X-register as an index to which of the IOCBs (one of eight) is to be used. CIO then moves the
control data from the selected IOCB to the ZIOCB for use by the appropriate device handler. The
ZIOCB is of little interest unless you are writing a new device handler or are replacing a current
one.

Device handlers that require I/O over the serial bus will then load control information into the DCB
[$0300,12]. SIO will use the DCB information and return the status information in the DCB for
subsequent use by the device handler. Figure 8-10 illustrates some common I/O functions and the
contents of their associated DCBs.

The resident disk handler does not conform to the regular user-CIO- handler-SIO calling
sequence. Instead, you use the DCB to communicate directly with the resident disk handler.
Section 9, the Disk Operating System, contains more information on the resident disk handler.

The last type of control block encountered in the I/O subsystem is the Command Frame Buffer
(CFB). This 4-byte table located at $023A is used by the SIO routine while performing the serial
bus operations. The four bytes contain the device code, command code, and command auxiliary
bytes 1 and 2. The data buffer that is transmitted is defined by two pointers BUFRLO [$0032,2]
and BFENLO [$0034,2]. In general it is not recommended that the OS be used at this level. Other
parameters have to be set, and extreme care must be taken in calling the proper sequence of
subroutines. CIO and SIO were designed to be easily called by user programs. Use them --- but
stay away from the command frame buffer!

IOCB CHART



82 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Call ICHID ICDNOICCO
M

ICSTA ICBAL ICBAH ICPTL ICPTH ICBLL ICBLH ICAX1 ICAX2

OPEN
FILE-R
EAD
OPEN
FILE-
WRIT
E
GET
BYTES
PUT
BYTES
GET
RECO
RD
PUT
RECO
RD
CLOS
E FILE
STAT
US

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

3
3
7
$B
5
9
$C
$D

note 1
note 1
note 1
note 1
note 1
note 1
note 1
note 1

$80
$80
00
00
00
00
X
X

06
06
06
06
06
06
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
$80
$80
$80
$80
X
X

X
X
00
00
00
00
X
X

4
8
X
X
X
X
X
X

0
note 2
X
X
X
X
X
X

            Note 1=The status of the I/O command is stored here and in the Y REG. on return from
CIO.
            Note 2=The Auxilary bytes of the IOCB's are used by some handlers to indicate special
modes.
            X = Indicates ignore but do not change the current value.
            GENERAL NOTE: The above IOCB definitions assume:
                  *=$600
                  IOBUFF .RES 80       USER I/O BUFFER
                  FILE  .BYTE 'D:MYPROG.BAS' USER  FILENAME

            Figure 8-9 Input Output Control Block (IOCB) 

Disk 810/815
Read Sector Write Sector

FunctionName Location 810 815 810 815 Put Format Printer
820
Write

Serial
Bus I.D.
Device
Number
Comman
d Byte
Status
Buffer
Address

Device
Timeout
Buffer
Length

DDEVIC
DUNIT
DCOMN
D
DSTATS
DBUFLO
DBUFHI
DTIMLO
DBYTLO
DBYTHI
DAUX1
DAUX2

[$0300]
[$0301]
[$0302]
[$0303]
[$0304]
[$0305]
[$0306]
[$0308]
[$0309]
[$030A]
[$030B]

$30
1-4
$52
$40
U
U
$30
$80
$00
2*
2*

$30
1-8
$52
$40
U
U
$30
00
01
2*
2*

$30
1-4
$57
$80
U
U
$30
$80
$00
2*
2*

$30
1-8
$57
$80
U
U
$30
00
01
2*
2*

$30
1-4
$50
$80
U
U
$31
$80/00
$00/01
- 2*
- 2*

$30
1-4
$21
$40
U
U
$130
-
-
-
-

$30
1
$57
$80
U
U
5
$40
$00
1*
1*

            1* = This bytes determines printer mode (see 820 manual).
            2* = DAUX1 + DAUX2 specify sector for READ, WRITE (PUT), or WRITE verify.
            U = Indicates user-set address



83The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            - = Indicates ignored

            Figure 8-10 Device Control Block (DCB) 

Central I/O System Routine

The main function of CIO is to take control data from an IOCB and ensure that it is routed to the
specific device handler needed, and then to pass control to that handler. CIO also acts as a
pipeline for most I/O in the system. Most of the OS I/O functions use CIO as a common entry
point, and all handlers exit via CIO. For example, BASIC will call CIO when performing an OPEN
or a GRAPHICS statement. CIO supports the following functions:

OPEN
CLOSE
GET CHARS
READ RECORD
PUT CHARS
WRITE RECORD
STATUS
SPECIAL

Device/file open
Device/file close
Read N characters
Read next record
Write N characters
Write next record
Get device status
Device handler specific (e.g., NOTE for FMS)

You may wish to make your own CIO calls. The calling sequence for CIO is:

                           ;rem user has already set up IOCB
            LDX #IOCBNUM   ;set the IOCB index (IOCB * 16)
            JSR CIOV       ;system routine vector to CIO
            BMI ERROR      if branch taken then CIO returned
                           ;error code in Y-register 

As shown in the above call, one of the IOCBs is used to communicate control data to CIO. You
may use any one of the eight IOCBS. CIO expects the IOCB index to be in the X-register. Note
that this value must be the IOCB number multiplied by 16. The reason is that CIO uses this value
as a true index into the various IOCBs, and each IOCB is 16 bytes. Upon return, the sign bit of the
6502 is set to indicate success or error in the I/O operation. If the N-bit is clear (i.e., a zero) the I/O
was done successfully, and the Y-register will contain a 1. If the N-bit is set, the I/O request
resulted in an error; in that case the Y-register will contain the error code number. A BMI
instruction to an error routine is the usual way to test for operational success. The error/success
value is also returned in the IOCB byte ICSTA (see IOCB definition). Chapter 5 of the
OPERATING SYSTEM Manual has a sample program segment that calls CIO to OPEN a disk file,
READ some records., then CLOSE the file.

CIO copies the control data from the selected IOCB to the page zero ZIOCB. CIO then determines
the device handler entry point and vectors to the appropriate device handler routine. Figure 8-11 is
a flowchart of the CIO system routine.



84 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 8-11.1 CIO Routine



85The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 8-11.2 CIO Routine 

The Handler Address Table

CIO calculates the device handier entry point in an indirect manner. First of all, an OPEN call must
preceed any other I/O function to a device. While processing an OPEN command, CIO retrieves
the device specification for the file being opened. The device specification is an ATASCII string
pointed to by the buffer address portion of the IOCB. The first element in this string must be a one
character device identifier (e.g., `D' for disk drive, `Pt for printer,...). CIO then searches for this
character in a table of handier entry points called HATABS, which runs from $031A to $033B
(Figure 8-12 shows the layout of HATABS). CIO begins the search at the bottom of HATABS and
works upward until a match is found for the device identifier. The search is performed in this
direction to facilitate the addition or modification of device handlers. During the initialization code,
the HATABS table is copied from ROM down into RAM. Devices that are then booted (e.g. the disk
drive, or RS-232 module) then add their handler information to the bottom of the table. There is
room in the table for a total of 14 entries, 5 of which are set up during system initialization. If a new



86 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

printer handier were added to the bottom of the table, CIO would find it before the one transferred
from ROM. This allows new handlers to replace old ones.

After the device identifier has been located, CIO knows that the next two bytes point to the devices'
entry point table. This is a table of addresses for the routines that handle each of the CIO
functions. Figure 8-13 gives the layout of a typical entry point table.

To find which one of the handier entry points to vector through, CIO then uses ICCOM, the IOCB
command byte, as an index into the entry table. The entry point tables for all of the resident device
handlers can be found in the OS listing. The relative position of each of the vectors in an entry
table have the same meaning from table to table. For example, the first position in all of the device
handler entry point tables is the vector to the device handler OPEN routine.

You can take advantage of the flexibility of HATABS to add some new features to the OS. Figure
8-14 is an example of how to add a null handler. A null handler does exactly what its name implies:
nothing. This can be useful in debugging programs. Instead of waiting around for 50,000 disk
accesses to find a bug, output can be directed to the null handier. With a null handler, trouble
spots in programs can be identified more quickly.

                         01 ; HANDLER ADDRESS TABLE
            E430         02 PRINTV  =     $E430
            E440         03 CASETV  =     $E440
            E400         04 EDITRV  =     $E400
            E410         05 SCRENV  =     $E410
            E420         06 KEYBDV  =     $E420
                         07 ;
            0000         08         *=   $031A
                         09 ;
                         10 HATABS
            031A 50      20         .BYTE   'P'     PRINTER
            031B 30E4    30         .WORD   PRINTV                  ENTRY POINT TABLE
            031D 43      40         .BYTE   'C'     CASSETTE
            031E 40E4    50         .WORD   CASETV     ENTRY POINT TABLE
            0320 45      60         .BYTE   'E'     DISPLAY EDITOR
            0321 00E4    70         .WORD   EDITRV     ENTRY POINT TABLE
            0323 53      80         .BYTE   'S'     SCREEN HANDLER
            0324 10E4    90         .WORD   SCRENV     ENTRY POINT TABLE
            0326 4B      0100       .BYTE   'K'     KEYBOARD
            0327 20E4    0110       .WORD   KEYBDV     ENTRY POINT TABLE
            0329 00      0120       .BYTE   0       FREE ENTRY 1 (DOS)
            032A 00 00   0130       .BYTE   0,0
            032C 00      0140       .BYTE   0       FREE ENTRY 2 (850 MODULE)
            032D 00 00   0150       .BYTE   0,0
            032F 00      0160       .BYTE   0       FREE ENTRY 3
            0330 00 00   0170       .BYTE   0,0
            0332 60      0180       .BYTE   0       FREE ENTRY 4
            0333 00 00   0190       .BYTE   0,0
            0335 00      0200       .BYTE   0       FREE ENTRY 5
            0336 00 00   0210       .BYTE   0,0
            0338 00      0220       .BYTE   0       FREE ENTRY 6
            0339 00 00   0230       .BYTE   0,0
            033B 00      0240       .BYTE   0       FREE ENTRY 7

            Figure 8-12 Handier Address Table (HATABS) 

                    *=$PRINTV
            E430 9E EE      .WORD  PHOPEN-1     DEVICE OPEN
            E432 DB EE      .WORD  PHCLOS-1     DEVICE CLOSE
            E434 9D EE      .WORD  BADST-1      DEVICE READ-NOT IMPLEMENTED
            E436 A6 EE      .WORD  PHWRIT-1     DEVICE WRITE
            E438 80 EE      .WORD  PHSTAT-1     DEVICE STATUS
            E43A 9D EE      .WORD  BADST-1      SPECIAL-NOT IMPLEMENTED
            E43C 4C 78 EE     JMP  PHINIT       DEVICE INITIALIZATION

            Figure 8-13 Printer Handler Entry Point Table 

            0000        10         *  =     $600
            031A        20 HATABS     =     $031A
            0600 A000   40 START      LDY   #0
            0602 B91A03 60 LOOP       LDA   HATABS,Y
            0605 C900   70            CMP   #0         ;   FREE ENTRY?
            0607 F009   80            BEQ   FOUND



87The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            0609 C8     90            INY
            060A C8     0100          INY
            060B C8     0110          INY              ;   POINT TO NEXT HATABS ENTRY
            060C C022   0120          CPY   #34        ;   AT END OF HATABS?
            060E D0F2   0130          BNE   LOOP       ;   NO ... CONTINUE
            0610 38     0140          SEC              ;   YES... INDICATE ERROR
            0611 60     0150          RTS
                        0160 ;
            0612 A94E   0180 FOUND    LDA   #'N        ;   SET DEVICE NAME
            0614 991A03 0190          STA   HATABS,Y
            0617 C8     0200          INY
            0618 A924   0210          LDA   #NULLTAB&255
            061A 991A03 0220          STA   HATABS,Y   ;   HANDLER ADDRESS
            061D C8     0230          INY
            061E A906   0240          LDA   #NULLTAB/256
            0620 991A03 0250          STA   HATABS,Y
            0623 60     0260          RTS
                        0270
            0624 3206   0290 NULLTAB .WORD  RTHAND-1   ;   OPEN
            0626 3206   0300         .WORD  RTHAND-1   ;   CLOSE
            0628 3406   0310         .WORD  NOFUNC-1   ;   READ
            062A 3206   0320         .WORD  RTHAND-1   ;   WRITE
            062C 3206   0330         .WORD  RTHAND-1   ;   STATUS
            062E 3406   0340         .WORD  NOFUNC-1   ;   SPECIAL
            0630 4C3306 0350         JMP    RTHAND     ;   INITILIZATION
                        0360 ;
            0633 A001   0380 RTHAND  LDY    #1         ;   SUCCESSFUL I/O FUNCTION
            0635 60     0400 NOFUNC  RTS               ;   FUNCTION NOT IMPLEMENTED

            Figure 8-14 Null Handler 

The Device Handlers

The device handlers can be divided into resident and nonresident handlers. The resident handlers
are present in the OS ROM, and may be called through CIO whenever the handier has an entry in
HATABS. The nonresident handlers must first be loaded into RAM and have their entry placed into
HATABS before they can be called from CIO. The resident device handlers are:

            (E:) Display Editor
            (S:) Screen
            (K:) Keyboard
            (P:) Printer
            (C:) Cassette

Although the nonresident handlers are not present in the OS ROM, nonresident handlers may be
added by the OS during power-up or SYSTEM RESET. You can even add your own device
handier during program execution. Figure 8-14 presents an example of adding a handier to the
OS.

The device handlers use I/O control data passed by CIO in the ZIOCB. Data in the ZIOCB is used
to perform I/O functions such as OPEN, CLOSE, PUT, and GET. Not all of the device handlers
support all the I/O commands (e.g., trying to PUT a character to the keyboard results in an Error
146, Function Not implemented). Section 5 of the OPERATING SYSTEM Manual contains a list of
the functions supported by each device handler, as well as complete operational details of the
handlers.

Serial I/O Routine

SIO handles serial bus communication between the serial device handlers in the computer and the
serial bus devices. It communicates with its caller through the device control block (DCB). SIO
uses the I/ O control data in the DCB to send and receive commands and data over the serial bus.
The calling sequence is:

                      ;caller has set up the DCB to do function
            JSR SIOV  ;system vector to SIO
            BMI ERROR ;N-bit set indicates error in I/O execution 

The DCB contains I/O control information for SIO and must be setup before the call to SIO. Figure
8-10 shows the contents of the DCB for some common I/O operations.



88 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

To send commands to SIO, you need to understand the structure of the DCB, which is described
in Section 9 of the OPERATING SYSTEM Manual. Figure 8-15 demonstrates a simple assembly
language routine to output a line to the printer by setting up the DCB and calling SIO.

            0000        05            *= $3000 ARBITRARY START
                        10 ;THIS ROUTINE PRINTS A LINE TO THE PRINTER BY CALLING SIO E459
                        20 SIOV       =       $E459   SIO VECTOR
            009B        30 CR         =       $9B     EOL
            0040        40 PRNTID     =       $40     PRINTER SERIAL BUS ID
            004E        45 MODE       =       $4E     NORMAL MODE
            001C        50 PTIMOT     =       $001C   TIMEOUT LOCATION
            0300        60 DDEVIC     =       $300    DEVICE SERIAL BUS ID
            0301        70 DUNIT      =       $301    SERIAL UNIT NUMBER
            0302        80 DCOMND     =       $302    SIO COMMAND
            0303        90 DSTATS     =       $303    SIO DATA DIRECTION
            0304        0100 DBUFLO   =       $304    BUFFER LOW ADDRESS
            0305        0110 DBUFHI   =       $305    BUFFER HIGH ADDRESS
            0306        0120 DTIMLO   =       $306    SIO TIMEOUT
            0307        0130 DTIMHI   =       $307
            0308        0140 DBYTLO   =       $308    BUFFER LENGTH
            0309        0150 DBYTHI   =       $309
            030A        0160 DAUX1    =       $30A    AUXILARY BYTE---PRINTER MODE
            030B        0170 DAUX2    =       $30B    AUXILARY BYTE---NOT USED
                        0180 ;
            3000 455841 0190 MESS     .BYTE   "EXAMPLE 12",CR
            3001 4D504C
            3005 452031
            3009 329B
                        0200 ;
            300B A940   0220          LDA    #PRNTID     SET BUS ID
            300D 8D0003 0230          STA    DDEVIC
            3010 A901   0240          LDA    #1          SET UNIT NUMBER
            3012 8D0103 0250          STA    DUNIT
            3015 A94E   0260          LDA    #MODE
            3017 8D0A03 0270          STA    DAUX1       PRINTER MODE NORMAL
            301A A901   0275          LDA    #1
            301C 8D0B03 0280          STA    DAUX2       UNUSED
            301F 8D0703 0290          STA    DTIMHI      TIMEOUT<256 SECS
            3022 A51C   0300          LDA    PTIMOT      SET SIO TIMEOUT FOR PRINTER
            3024 8D0603 0310          STA    DTIMLO
            3027 A900   0320          LDA    #MESS&255
            3029 8D0403 0330          STA    DBUFLO      SET MESS AS BUFFER
            302C A930   0340          LDA    #MESS/256
            302E 8D0503 0350          STA    DBUFHI
            3031 A980   0360          LDA    #$80        SET SIO DATA DIRECTION FOR
            3033 8D0303 0370          STA    DSTATS      PERIPHERAL TO RECEIVE
            3036 A957   0380          LDA    #'W         SIO COMMAND WRITE
            3038 8D0203 0390          STA    DCOMND
            303B 2059E4 0410          JSR    SIOV        CALL SIO
            303E 3001   0420          BMI    ERROR
            3040 00     0430 GOOD     BRK
            3041 00     0440 ERROR    BRK

            Figure 8-15 SIO Call to Dump Line to Printer 

SIO Interrupts

SIO uses three IRQ Interrupts to control serial bus communications with serial bus devices:

IRQ Location, Length Function
VSERIR
VSEROR
VSEROC

[$020A,2]
[$020C,2]
[$020E,2]

SERIAL INPUT READY
SERIAL OUTPUT NEEDED
TRANSMISSION FINISHED

All program execution is halted while SIO uses the serial bus for communication. Even though
nothing else is happening during a serial bus transfer, the actual I/O itself is interrupt driven. The
method of communicating between SIO and the interrupt handlers is known as the semaphore
method. The mainline code waits in a loop until the interrupt handlers signal it that they are
finished. For instance, during output, SIO places a byte to be transferred into the serial output shift
register located in POKEY. It then enters a loop and watches a flag which will be set when the
requested I/O is completed. During this time POKEY is sending the bits out over the serial line.



89The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

When the byte has been sent, a Serial Output Needed IRQ is generated. This IRQ then vectors to
a routine which loads the next byte in the buffer into the serial output register. This process
continues until the entire buffer has been sent. After taking care of checksum values, the interrupt
handler then sets the transmit done flag. Meanwhile, SIO has been patiently looping, watching for
this flag to be set. When it sees that the flag has been set, SIO exits back to the calling routine.

The SIO execution for input is similar. POKEY generates an IRQ (VSERIR) to inform SIO a byte
has been received in the serial input shift register (SERIN). The interrupt handler for VSERIR then
stores the byte in a buffer and checks whether the end of the buffer has been reached. If so, it sets
the transmit done flag.

You may have noticed from the above explanation that SIO wastes some time idling while waiting
for POKEY to send or receive information on the bus. Because the vectors for the three SIO IRQ
service routines are RAM vectors, they can be used by your own handlers to improve system I/O
performance. Indeed, this is how the ATARI 850 Interface Module is able to do concurrent I/O.
That handler takes over the SIO IRQ vectors and points them to the module's own IRQ routines
while in concurrent I/O. This allows the calling program to continue to execute while the interface
Module sends commands and data over the serial line.

Using CIO from BASIC

Most of the CIO functions (OPEN, CLOSE, etc.) are available through calls from BASIC using the
OPEN, GET and PUT statements. However, BASIC lacks one set of the functions of CIO, the
ability to do non-record I/O more than a byte at a time (GETCHRS and PUTCHRS).

The ability to input or output a buffer of characters is a powerful asset. An assembly language
routine can be loaded directly into memory from a disk file for instance. Or a high resolution
graphics image can be loaded directly into the screen memory area. A common method of
improving a BASIC language program's performance is to provide a machine language program to
handle certain functions that BASIC executes slowly. Unfortunately, finding a place in RAM for
such a routine can be a knotty problem. One solution is to place the routine into an area reserved
for a string, and calling the routine with a USR call to ADR(string). Since the address of a BASIC
string may shift during program editing, the assembly language routine must be relocatable.
Therefore, unmodified memory reference instructions to addresses within the string will not work.

The subroutine in Figure 8-16 avoids the use of strings by loading a routine into Page 6 RAM.
Thus the assembly language routine need not be relocatable. Control data is POKEd into an IOCB
to read an assembly language routine directly into RAM at the address it was assembled. The
BASIC subroutine in Figure 8-16 can also be used to output data directly from memory with the
user specifying both the location and the length of the data buffer.

            30 REM THIS PROGRAM LOADS PAGE 6 FROM THE FILE D:TEST
            100 DIM FILE$(20),CIO$(7):CIO$="hhh*LVd"
            106 REM CIO$ IS PLA,PLA,PLA,TAX,JMP $E456 (CIOV)
            110 FILE$="D:TEST":REM - *FILE NAME
            120 CMD=7:STADR=1536:GOSUB 30000
            130 IF ERROR=1 THEN ? "TRANSFER COMPLETE":STOP
            135 ? "ERROR # ";ERROR;" OCCURRED AT LINE # ";PEEK(186)+256*PEEK(187)
            200 END
            300 REM _ CIO SETUP SUBROUTINE
            310 REM
            30000 REM
            30001 REM
            30002 REM THIS ROUTINE LOADS OR SAVES MEMORY FILE FROM BASIC
            30003 REM BY SETTING UP AN IOCB AND CALLING CIO DIRECTLY
            30004 REM
            30006 REM ON ENTRY CMD=7 MEANS LOAD MEMORY
            30008 REM _        CMD=11 MEANS SAVE MEMORY
            30009 REM _        STADR= THE ADDRESS TO LOAD OR SAVE MEMORY
            30010 REM _        BYTES= THE NUMBER OF BYTES TO SAVE OR LOAD
            30011 REM _        IOCB= THE IOCB TO USE
            30012 REM _        FILE$= DESTINATION FILE NAME
            30013 REM _
            30014 REM ON EXIT ERROR=1 MEANS SUCCESSFUL COMMAND
            30018 REM _       ERROR<>1 THEN ITS AN ERROR STATUS
            30019 REM
            30020 REM _ *** IOCB EQUATES ***



90 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            30022 REM
            30024 IOCBX=IOCB*16:ICCOM=834+IOCBX:ICSTA=835+IOCBX
            30026 ICBAL=836+IOCBX:ICBAH=837+IOCBX
            30028 ICBLL=840+IOCBX:ICBLH=841+IOCBX
            30029 REM
            30030 AUX1=4:IF CMD=11 THEN AUX1=8
            30035 TRAP 30900:OPEN #IOCB,AUX1,0,FILE$
            30040 TEMP=STADR:GOSUB 30500
            30090 POKE ICBAL,LOW:POKE ICBAH,HIGH
            30100 TEMP=BYTES:GOSUB 30500
            30130 POKE ICBLL,LOW:POKE ICBLH,HIGH
            30140 POKE ICCOM,CMD:ERROR=USR(ADR(CIO$),IOCBX)
            30150 ERROR=PEEK(ICSTA):RETURN
            30200 REM
            30300 REM _ ***ROUTINE RETURNS HIGH,LOW BYTE OF 16 BIT NUMBER
            30400 REM
            30500 HIGH=INT(TEMP/256):LOW=INT(TEMP-HIGH*256):RETURN
            30550 REM
            30600 REM ***TRAP HERE IF ERROR OCCURS DURING ROUTINE****
            30900 ERROR=PEEK(195) 30920 CLOSE #IOCB:RETURN

            Figure 8-16 BASIC Direct CIO Call 

REAL TIME PROGRAMMING
Most of the time in programming we have the luxury of ignoring time considerations. Usually we
don't care how long a program takes to run, or don't bother to measure precise timing values on
subroutine execution. Sometimes, however, timing considerations play an important role in the
performance of the program, and then we enter the world of Real Time Programming. Such cases
arise often with the ATARI Home Computer System. Much more so than with most other small
computers, this system thrives on real time control. The very time base upon which the internal
circuitry operates was precisely chosen so that the computer hardware would be in complete
synchrony with a specific signal - namely, the television signal.

In order to get clean, crisp graphics and special effects, the hardware in the ATARI Home
Computer System is slaved to the local television signal. Unfortunately, there are several
"standard" television signals in use in various countries. In the United States, the standard is the
NTSC system: 60 frames per second, 262 horizontal lines per frame, and 228 color clocks per line.
The 262 lines comes about only because the ATARI Home Computer System generates a
non-interlaced signal; the real standard calls for 525 lines with half being shown each frame. Some
European countries use a standard called PAL: 50 frames per second, 312 lines per frame. The
result is that timing considerations are different on NTSC vs. PAL systems. Refer to Section 2,
ANTIC and the Display List, for a more detailed discussion of the television signal. The remarks in
this subsection are based on NTSC systems.

Synching to the Television Signal

The 6502 processor is synchronized to the television signal in two ways, a coarse and a fine
synchronization. Coarse synchronization is derived by having the same signal that synchronizes
television receivers to the transmitted television signal cause a system interrupt. This signal is
called vertical blank, and in television sets it is the cue to turn off the electron beam and begin
retracing to the top of the screen in preparation for another frame. This same signal is presented to
the computer as a nonmaskable interrupt. To the programmer, this provides a regularly occurring
interrupt that can be used for everything from sound and timing information to a crude
multiprogramming method. For a detailed discussion of Vertical Blank processing, see the
subsection on interrupt Processing Structure.

An even finer correlation between the 6502 processing and the television signal was achieved by
setting the system clock rate to 1.79 MHz. This results in a direct relationship between the time it
takes to execute a machine instruction and the distance the electron beam travels on the screen.
For instance, during the time it takes to execute the shortest 6502 instruction (2 cycles), the beam
moves four color clocks, or one OS mode 0 character width across the screen. This precise
correlation of timing allows a skilful programmer to produce graphic effects in the middle of a
single scan line. A note of caution is in order, however. ANTIC's direct memory access makes that
this intraline timing very uncertain, and will vary depending upon the mode selected and other
factors. In actual usage, this means that each intraline change must be dealt with and tested as a
special case.



91The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Hardware Timers

There are four countdown timers built into the POKEY chip. They function as reusable "hardware
subroutines". The most common use of these timers is in conjunction with the audio channels for
producing sound effects (see Section 7, Sound). They may also be used as straight countdown
timers, since they generate an IRQ interrupt (see subsection on Interrupt Processing Structure).
Each timer is associated with a frequency register which holds the initial value for the timer. When
the hardware register STIMER is written to, this initial value is loaded and the countdown timer
started. When the timer counts down to zero, an IRQ Interrupt request is generated. It is important
to note that only timers 1, 2 and 4 have interrupt vectors for processing. The following steps must
be taken to activate any of the timers.

Step 1. Set AUDCTL [$D208] with proper value to select clocking frequency for the desired timer.
Step 2. Set the volume output to 0 for the audio channel associated with the selected timer
(AUDC1, AUDC2, AUDC4 [$D201, $D203, $D207]).
Step 3. Set AUDF1 , AUDF2 or AUDF4 [$D200, $D202, $D206] with the desired number of clock
intervals to count.
Step 4. Set up routine to process timer interrupt.
Step 5. Change timer interrupt vector to point to processing code (VTIMR1, VTIMR2, VTIMR4
[$0210, $0212, $0214]). *** Note. Due to a bug in the source code, the original version of the
operating system will never vector through VTIMR4. This has been fixed in Rev. B.
Step 6. Set bits 0, 1 or 2 in IRQEN and the OS shadow POKMSK [$D20E and $0010] to enable
interrupts from timers 1, 2 or 4.
Step 7. Write any value to register STIMER [$D209] to load and start the count down timers. 

One complication of working with these timers is that the 6502's response to them will be
pre-empted and possibly delayed by ANTIC's direct memory access, display list interrupts or
vertical blank processing.

Software Timers

There are 6 system software timers:

Name Location Vector or Flag
RTCLOK
CDTMV1
CDTMV2
CDTMV3
CDTMV4
CDTMV5

[$0012,3]
[$0218,2]
[$021A,2]
[$021C,2]
[$021E,2]
[$0220,2]

none
CDTMA1 [$0226,2]
CDTMA2 [$0228,2]
CDTMF3 [$022A,1]
CDTMF4 [$022C,1]
CDTMF5 [$022E,1]

All of the system timers are decremented as part of the vertical blank (VBLANK) process. If the
VBLANK process is disabled or intercepted, the timers will not be updated.

The real time clock (RTCLOK) and system timer 1 (CDTMV1) are updated during immediate
VBLANK, Stage 1. RTCLOK counts up from 0 and is a three-byte value. When RTCLOK reaches
its maximum value (16,777,216) it will be reset to zero. RTCLOK can be used as a real. time clock
as Figure 8-17 shows.

Because the system timers are updated as part of the VBLANK process, special care is needed to
set them correctly. A system routine called SETVBV [$E45C] is used to set them. The call to
SETVBV is:

            REG :
            X contains the timer value high byte
            Y contains the timer value low byte
            A contains the timer number 1-5 

Example:



92 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            LDA #1      ;Set system timer 1
            LDY #0
            LDX #2      ;value is $200 VBLANK periods
            JSR SETVBV  ;Call system routine to set timer

System timers 1-5 are 2-byte counters. They may be set to a value using the SETVBV routine. The
OS then decrements them during VBLANK. Timer 1 is decremented during immediate VBLANK,
Stage 1. Timers 2-5 are decremented during immediate VBLANK, Stage 2. Different actions are
taken by the OS when the different timers are decremented to 0.

System timers 1 and 2 have vectors associated with them. When timer 1 or 2 reaches 0, the OS
simulates a JSR through the vector for the given timer. Figure 8-7 gives the vectors for the two
timers.

System timers 3-5 have flags that are normally SET (i.e. non-zero). When either of the three timers
count to 0, the OS will clear (zero) that timer's flag. You may then test the flag and take appropriate
action.

Timers 1-5 are general purpose software timers that may be used for a variety of applications. For
example, timer 1 is used by SIO to time serial bus operations. If the timer counts to zero before an
bus operation is complete, a "timeout" error is returned. Timer 1 is set to various values depending
on the device being accessed. This ensures that, while a device has ample time to answer an I/O
request, the computer will not wait indefinitely for a non-existent device to respond. The cassette
handler uses timer 3 to set the length of time to read and write tape headers. Figure 8-18 shows
an example using timer 2 to time a sound acting as a metronome.

The software timers are generally used when the time scale involved is greater than one VBLANK
period. For time durations shorter than this, either the hardware timers or some other method must
be employed.

            1 POKE 752,1
            3 ? "+":REM CLEAR SCREEN (+=ESC-CTRL-CLR)
            4 ? "HOUR";:Input HOUR:? "MINUTE";:Input MIN:? "SECOND";:Input SEC
            5 CMD=1:GoSub 45
            6 ? "+";HOUR;" : ";MIN;" : ";SEC:? " ": ? " "
            7 CMD=2:GoSub 45
            9 ? "";HOUR;":";MIN;":";SEC;"   ":GoTo 7
            10 REM THIS IS A DEMO OF THE REAL TIME CLOCK
            20 REM THIS ROUTINE ACCEPTS AN INITIAL TIME In HOURS,MINUTES, And SECONDS
            30 REM IT SETS THE REAL TIME CLOCK To ZERO
            40 REM THE CURRENT VALUE OF RTCLOCK IS USED To ADD THE INITIAL TIME To Get
            42 REM THE CURRENT TIME HOUR,MIN,SEC
            45 HIGH=1536:MED=1537:LOW=1538
            50 REM
            60 REM ******ENTRY POINT****** 65 REM
            70 On CMD GoTo 100,200
            95 REM
            96 REM ****INITIALIZE CLOCK*****
            97 REM
            100 POKE 20,0:POKE 19,0:POKE 18,0
            105 Dim CLOCK$(50)
            106 CLOCK$=" "
            107 GoSub 300
            110 IHOUR-HOUR:IMIN=MIN:ISEC=SEC:Return
            197 REM
            198 REM *******Read CLOCK*****
            199 REM
            200 REM
            201 A=USR(ADR(CLOCK$))
            210 TIME-C(((PEEK(HIGH)*256)+PEEK(MED))*256)+PEEK(LOW))/59.923334
            220 HOUR=INT(TIME/3600):TIME=TIME-(HOUR*3600)
            230 MIN=INT(TIME/60):SEC=INT(TIME-(MIN*60))
            235 SEC=SEC+ISEC:If SEC>60 Then SEC=SEC-60:MIN=MIN+1
            236 MIN=MIN+IMIN:If MIN>60 Then MIN=MIN-60:HOUR=HOUR+1
            237 HOUR=HOUR+IHOUR
            240 HOUR=HOUR-(INT(HOUR/24))*24
            250 Return
            300 For J=l To 38:Read Z:CLOCK$(J,J)=CHR$(Z):Next J:Return
            310 DATA 104,165,18,141,0,6,165,19,141,1,6,165
            320 DATA 20,141,2,6,165,18,205,0,6,208,234
            330 DATA 165,19,205,1,6,208,227,165,20,205,2,6,208,220,96



93The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 8-17 Real Time Clock 

            1 REM THIS IS A BASIC PROGRAM TO CONTROL THE RATE OF A METRONOME
            2 REM
            3 REM
            5 PRINT "+":REM                       CLEAR SCREEN
            10 X=10:REM                           INITIAL VALUE FOR RATE
            20 FOR J=1 TO 10:NEXT J:REM           SOFTWARE DELAY LOOP
            50 IF STICK(0)=14 THEN X=X+1 :REM     STICK FORWARD MEANS SPEED UP RATE
            51 IF STICK(0)=13 THEN X=X-1 :REM     STICK BACK MEANS SLOW METRONOME RATE
            52 IF X<1 THEN X=1:REM                NEVER GO BELOW ONE
            53 IF X>255 THEN X=255:REM            OR ABOVE 255
            54 REM                                PRINT BEATS/MINUTE
            56 ? "";INT(3600/X);" BEATS/MINUTES       "
            60 POKE 0,X:REM                       LOCATION $0000 HOLDS THE RATE FOR
            70 NEXT I :REM                        THE FOLLOWING ASSEMBLY ROUTINE

            Figure 8-18 BASIC language Metronome Routine 

            40             *=$600
            50 ;METRONOME  ROUTINE...USES $0000 TO PASS THE METRONOME RATE
            60 ;
            70 AUDF1       =       $D200   AUDIO FREQUENCY REGISTER
            80 AUDC1       =       $D201   AUDIO CONTROL REGISTER
            90 FREQ        =       $08     AUDF1 VALUE
            0100 VOLUME    =       $AF     AUDC1 VALUE
            0110 OFF       =       $A0     TURN OFF VOLUME
            0120 SETVBV    =       $E45C   SET TIMER VALUE ROUTINE
            0130 XITVBV    =       $E462
            0140 CDTMV2    =       $021A   TIMER 2
            0150 CDTMA2    =       $0228   TIMER 2 VECTOR
            0160 ZTIMER    =       $0000   ZPAGE VBLANK TIMER VALUE
            0170 ;
            0180 START     LDA    #10
            0190           STA    ZTIMER
            0200 ;      SET THE TIMER VECTOR
            0220 ;
            0230 INIT      LDA    #CNTINT&255
            0240           STA    CDTMA2
            0250           LDA    #CNTINT/256
            0260           STA    CDTMA2+1
            0270 ;
            0280 ;      SET THE TIMER VALUE AFTER THE VECTOR
            0290 ;
            0300           LDY    ZTIMER   SET TIMER TWO TO COUNT
            0310           JSR    SETIME
            0320           RTS
            0340 ;      METRONOME COUNT DOWN VECTORS TO HERE
            0380 ;      SET UP AUDIO CHANNEL FOR MET CLICK
            0390
            0400 CNTINT    LDA    #VOLUME
            0410           STA    AUDC1
            0420           LDA    #FREQ
            0430           STA    AUDF1
            0435           LDY    #$FF  DELAY
            0440 DELAY     DEY
            0442           BNE    DELAY
            0450           STY    AUDC1
            0460           JMP    INIT
            0480 ;
            0490 ;      SUBROUTINE TO SET TIMER
            0500 ;
            0520 SETIME    LDX    #0              NO TIME >256 VBLANKS
            0530           LDA    #2              SET TIMER 2
            0540           JSR    SETVBV          SYSTEM ROUTINE TO SET TIMER
            0550           RTS
            0560           *=$2E2
            0570           .WORD  START
            0580           .END

            Figure 8-19 Assembly language Metronome Routine 

FLOATING POINT PACKAGE
The Floating Point Package (FPP) is a set of integrated routines that provide an extended
arithmetic capability for the OS. These routines are combined in a separate ROM chip that is
provided as part of the ATARI 10K OPERATING SYSTEM. The FPP is located at hexadecimal



94 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

addresses $D800 - $DFFF. It has not been changed in the Revision B version of the OS. The
following paragraphs detail the internal representation of numbers, the actual routines available for
use, and their proper calling sequence. An assembly language program example is included to
illustrate how to access the FPP from user programs.

Internal Representation

The FPP configures numbers internally as 6-byte quantities. Each number consists of a 1-byte
exponent and a 5-byte mantissa in Binary Coded Decimal (BCD) format. This representation was
chosen to minimize rounding errors that might occur in some math routines.

The sign bit of the exponent byte provides the sign of the mantissa, 0 for positive, 1 for negative.
The least significant 7 bits of the exponent byte provide the exponent as a power of 100 in "excess
64 notation". In excess 64 notation, the value 64 is added to the exponent value before it is placed
in the exponent byte. This allows the full range of exponents, positive and negative, to be
expressed without having to use the sign bit.

The mantissa is always normalized such that the most significant byte is non-zero. However, since
the mantissa is in BCD format, and the exponent represents powers of 100 and not 10, either 9 or
10 digits of precision may result. There is an implied decimal point to the right of the first mantissa
byte so that an exponent that is less than 64 (40 hex) indicates a number less than 1.

EXAMPLES(Format values are in hex)

            Number: 0.02 2 * 100**-l
            Format: 3F 02 00 00 00 00 (exponent= 40-1)

            Number: -0.02 -2 * 100**-l
            Format: BF 02 00 00 00 00 (exponent= 80+40-1)

            Number: 37.0 = 37 * 100**0
            Format: 40 37 00 00 00 00 (exponent= 40+0)

            Number: -460312 = -46.0312 * 100**2
            Format: C2 46 03 12 00 00 (exponent= 80+40+2) 

The number zero is handled as a special case, and is represented as a zero exponent and zero
mantissa. Either the exponent or the first mantissa byte may be tested for zero.

The dynamic range of numbers that can be represented by this scheme is 10**-98 to 10**+98.

Memory Utilization

Two areas of RAM memory are used in implementing the FPP. They are:

            $00D4 - $00FF in Page zero
            $057E - $05FF in Page five 

These areas are used both for control parameter storage and to simulate several floating point
registers. The two pseudo-registers of primary interest are called FRO and FR1 (locations
$00D4-$00D9 and $00EO- $00E5 respectively). Each of these pseudo-registers is six bytes in
length and will hold a number in floating point representation. A two- byte pointer is used in
pointing to a floating point number. This is called FLPTR and resides at $00FC.

Buffer areas must be provided for text strings in converting between floating point numbers and
ATASCII text strings. The output buffer is called LBUFF, a 128 byte block from $0580 to $05FF.
The input buffer is set by the two byte pointer INBUFF at $00F3. Also, a one byte index CIX at
$00F2 is used as an offset into the buffer pointed to by INBUFF.

A typical sequence to use the floating point package from an assembly language routine would be
as follows. First an ATASCII string that represents one of the numbers to be used by a math
routine would be stored in a buffer anywhere in memory. Next, pointer INBUFF would be set to



95The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

point to the beginning of this string. Also, the index value, CIX, should be set to 0. The number is
then ready to be converted to a floating point representation, so routine AFP would be called. This
would result in a floating point number being placed in FRO where it could be used in any of the
FPP operations. After the conclusion of the mathematical operations, the floating result would be in
FR0. Calling the routine FASC would convert this number to an ATASCII string located in LBUFF.
Refer to Figure 8-21 for an example of this process.

To use 16-bit values with the FPP, place the two bytes of the number into the lowest two bytes of
FRO ($D4 and $D5) and JSR IFP, which converts the integer to its floating point representation.,
leaving the result in FRO. Subroutine FP1 performs the reverse operation.

The chart on the next page lists the functions available, their ROM addresses, pseudo registers
affected and approximate maximum computation time.

            FLOATING POINT ROUTINES

Name Address Function Result MAX. TIME
(microsec.)

AFP
FASC
IFP
FPI
FSUB
FADD
FMUL
FDIV
FLDOR
FLDOP
FLD1R
FLD1P
FSTOR
FSTOP
FMOVE
PLYEVL
EXP
EXP1O
LOG
LOG10
ZFR0
AF1

D800
D8E6
D9AA
D9D2
DA60
DA66
DADB
DB28
DD89
DD8D
DD98
DD9C
DDA7
DDA8
DDB6
DD40
DDC0
DDCC
DECD
DED1
DA44
DA46

ATASCII to floating
point
Floating point to
ATASCII
Integer to floating
point
Floating point to
Integer
FR0-FR1
Subtraction
FR0+FR1 Addition
FR0*FR1
Multiplication
FR0/FR1 Division
Floating Load
using X,Y
Floading Load
using FLPTR
Floating Load
using X,Y
Floating Load
using FLPTR
Floating store
using X,Y
Floating store with
FLPTR
Move FR0
Polynomial
evaluation
Exponentiation -
e**FR0
Exponentiation -
10**FR0
Natural logarithm
Base 10 logarithm
Set to zero
Set register in X to
zero

FR0
LBUFF
FR0
FR0
FR0
FR0
FR0
FR0
FR0
FR0
FR1
FR1
FR0
FR0
FR1
FR0
FR0
FR0
FR0
FR0
FR0
varies

3500
950
1330
2400
740
710
12000
10000
70
60
70
60
70
70
60
88300
115900
108800
136000
125400
80
80

            Figure 8-20 Floating Point Routines 

            0000        20         *= $4000  ; ARBITRARY STARTING POINT
            DDB6        30   FMOVE  = $DDB6
            DA60        40   FSUB   = $DA60
            0482        50   FTEMP  = $0482



96 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            DDA7        60   FSTOR  = $DDA7
            D8E6        70   FASC   = $D8E6
            0OF3        80   INBUFF = $00F3
            D800        85   AFP    = $D800
            0OF2        90   CIX    = $00F2
            0580        100  LBUFF  = $0580
            009B        120  CR     = $9B
            0009        130  PUTREC = $09
            0005        140  GETREC = $05
            E456        150  CIOV   = $E456
            0342        160  ICCOM  = $0342
            0344        170  ICBAL  = $0344
            0348        180  ICBLL  = $0348
                        190  ;
                        200  ; FLOATING POINT DEMONSTRATION
                        210  ; READS TWO NUMBERS FROM SCREEN EDITOR,
                        215  ; CONVERTS THEM TO FLOATING POINT,
                        220  ; SUBTRACTS THE FIRST FROM THE SECOND,
                        225  ; STORES THE RESULT IN FTEMP,
                        230  ; WHICH IS A USER DEFINED FP REGISTER,
                        240  ; AND DISPLAYS THE RESULT.
            4000 205340 260  START   JSR GETNUM      ; GET 1ST NUMBER FROM E:
            4003 20B6DD 270          JSR FMOVE       ; MOVE NUMBER FROM FRO TO FR1
            4006 205340 280          JSR GETNUM      ; GET 2ND NUMBER FROM E:
            4009 2060DA 290          JSR FSUB        ; FRO <-- FR0-FR1
            400C 900A   300          BCC NOERR       ; SKIP IF NO ERROR
            400E A981   340          LDA #ERRMSG&255 ; IF ERR., DISPLAY MESSAGE
            4010 8D4403 350          STA ICBAL
            4013 A940   360          LDA #ERRMSG/256
            4015 4C3940 370          JMP CONTIN
            4018 A282   390  NOERR   LDX #FTEMP&255  ; STORE RESULT IN FTEMP
            401A A004   400          LDY #FTEMP/256
            401C 20A7DD 410          JSR FSTOR
                        420  ;
                        430  ; CONVERT NUMBER TO ATACSII STRING.
                        440  ; FIND END OF STRING,
                        445  ; CHANGE NEGATIVE NUM. TO POSITIVE,
                        450  ; AND ADD CARRIAGE RETURN.
            401F 20E6D8 470          JSR FASC        ; FP TO ATASCII, RESULT IN LBUFF
            4022 A0FF   480          LDY #$FF
            4024 C8     490  MLOOP   INY
            4025 B1F3   500          LDA (INBUFF),Y  ; LOAD NEXT BYTE
            4027 10FB   510          BPL MLOOP       ; IF POSITIVE, CONTINUE
            4029 297F   520          AND #$7F        ; IF NOT, MASK OFF MSBIT
            402B 9lF3   530          STA (INBUFF),Y
            402D C8     540          INY
            402E A99B   550          LDA #CR         ; STORE CARRIAGE RETURN
            4030 9lF3   560          STA (INBUFF),Y
                        570  ;
                        580  ; DISPLAY RESULT
            4032 A5F3   600          LDA INBUFF      ; GET BUFFER ADDRESS
            4034 8D4403 610          STA ICBAL
            4037 A5F4   620          LDA INBUFF+1
            4039 8D4503 630  CONTIN  STA ICBAL+1
            403C A909   640          LDA #PUTREC     ; COMMAND FOR PUT RECORD
            403E 8D4203 650          STA ICCOM
            4041 A928   660          LDA #40         ; SET BUFFER LENGTH = 40
            4043 8D4803 670          STA ICBLL
            4046 A900   690          LDA #0
            4048 8D4903 700          STA ICBLL+1
            404B A200   710          LDX #0          ; IOCB 0 FOR SCREEN EDITOR
            404D 2056E4 720          JSR CIOV        ; CALL CIO
            4050 4CO040 730          JMP START       ; DO IT AGAIN
                        740
                        750  ; GET ATASCII STRING FROM E:
                        755  ; CONVERT TO FP, RESULT IN FR0
            4053 A905   780  GETNUM  LDA #GETREC     ; GET RECORD (ENDS WITH CR)
            4055 8D4203 790          STA ICCOM
            4058 A980   800          LDA #LBUFF&255  ; SET BUFFER ADDRESS = LBUFF
            405A 8D4403 810          STA ICBAL
            405D A905   820          LDA #LBUFF/256
            405F 8D4503 830          STA ICBAL+1
            4062 A928   840          LDA #40         ; SET BUFFER LENGTH =40
            4064 8D4803 850          STA ICBLL
            4067 A900   860          LDA #0
            4069 8D4903 870          STA ICBLL+1
            406C A200   880          LDX #0          ; IOCB 0 FOR SCREEN EDITOR
            406E 2056E4 890          JSR CIOV        ; CALL CIO
            4071 A980   900          LDA #LBUFF&255  ; STORE BUFFER ADD. IN INBUFF
            4073 85F3   910          STA INBUFF



97The Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            4075 A905   920          LDA #LBUFF/256
            4077 85F4   930          STA INBUFF+1
            4079 A900   940          LDA #0          ; SET BUFFER INDEX = 0
            407B 85F2   950          STA CIX
            407D 200OD8 960          JSR AFP         ; CALL ATASCII TO FP
            4080 60     970          RTS
            4081 45     980  ERRMSG  .BYTE "ERROR",CR
            4082 52
            4083 52
            4084 4F
            4085 52
            4086 9B
                        1000 ; ROUTINE START INFO
            4087        1020         * = $2E0
            02EO 0040   1030         .WORD START
            02E2        1040         .END

            Figure 8-21 Floating Point Example 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The Disk
Operating

System

Chapter

IX



99The Disk Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

9 The Disk Operating System

The Disk Operating System (DOS) is an extension of the OS that allows you to access the ATARI
810' Disk Drive mass storage device as you would access any of the other input/out devices. DOS
has three primary components, the resident disk handier, the File Management System (FMS),
and the Disk Utility Package (DUP). The resident disk handler is the only part of DOS provided in
the OS ROM. FMS and DUP both reside on diskette, with FMS being loaded ("booted") into
memory at power-up. DUP is not automatically loaded at power up, but requires an explicit request
from an application program. If the BASIC language cartridge is present, for instance, DUP is not
loaded until a DOS statement is issued. The following subsections describe each of these
components in more detail and present other related topics necessary for effective utilization of
DOS. You should note that the comments in this section refer to version 2.0S of the Disk
Operating System, which is substantially different from earlier versions of DOS. For complete
technical details regarding DOS, you should also refer to the OPERATING SYSTEM Manual, and
the DISK OPERATING SYSTEM II Manual.

The Resident Disk Handler
The resident disk handler is the simplest part of DOS. The disk handier does not conform to the
normal CIO calling sequence as observed by other Device Handlers (see section 8, the Operating
System, for details on using the Centralized Input/Output Subsystem). In DOS 2.0S, the resident
disk handler is used only during the initial boot process. From then on, additional code in the FMS
is used in accessing the disk drives. The relationship of the disk handier to the I/O subsystem is
shown in Figure 8-8 of this manual.

The Device Control Block (DCB) is used to communicate with the disk handler. Figure 8-10
illustrates the structure of the DCB. The calling sequence for the disk handler is:

                         ;caller has already set up DCB
            JSR DSKINV   ;system routine Vector to the resident Disk Handler
            BPL OKAY     ;Branch if success, Y Reg. = 1
                         ;Else y reg. = error status (DCBSTA also has error) 

The disk handler is a subroutine that is used to support the physical transfers of data between the
6502 inside the ATARI Home Computer System, and another processor located inside the ATARI
810 Disk Drive. This data transfer occurs over the serial input/output bus. The OS resident disk
handier supports four functions:

            FORMAT Issue a Format command to the disk controller
            READ SECTOR Read a specified sector
            WRITE/VERIFY SECTOR Write sector; check sector to see if written
            STATUS Ask the disk controller for its status 

The FORMAT command clears all the tracks on the diskette and writes sector addresses onto the
tracks. No file structure is put on the diskette by this command. The data portion of each sector is
set to all zeros, and the initial Volume Table of Contents and the File Directory are established. For
more information on the physical layout of data on a diskette, refer to the OPERATING SYSTEM
Manual and the subsection on FMS Disk Utilization.

You should note that all I/O from the disk handier is sector-oriented. The sector I/O commands can
be used to read and write any sector on the diskette. You can use them to implement your own file
structure. Section 10 of the OPERATING SYSTEM Manual has an example of using the disk
handler to write a boot tile.

The STATUS function is used to determine the status of the disk drive. This command causes the
disk drive to transmit four bytes that define its current status. These bytes are loaded into DVSTAT
[$02EA,4]. The first byte is a command status byte and contains the following status bits:

            Bit-0 = 1 indicates an invalid command frame was received.
            Bit-1 = 1 indicates an invalid data frame was received.
            Bit-2 = 1 indicates that a PUT operation was unsuccessful.
            Bit-3 = 1 indicates that the disk is write protected.
            Bit-4 = 1 indicates active/standby.



100 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The second byte is a hardware status byte and contains a copy of the status register of the
INS1771-1 Floppy Disk Controller chip used in the disk controller. The third byte is a timeout byte
that contains a controller- provided maximum timeout value (in seconds) to be used by the
handler. The fourth byte is unused. You can use the STATUS command for several purposes.
Since the device timeout value for a STATUS command is less than that for the other commands,
you can use it to see if a specific disk drive is connected. If the disk handler returns a device
timeout error, you know the disk drive is not connected.
File Management System
The File Management System (FMS) is a nonresident device handler that uses the normal device
handler-CIO interface. FMS is not present in the OS ROM. It is booted in at power-up if a diskette
containing DOS is present.

FMS, like the other device handlers, gets I/O control data from CIO. FMS then uses its own disk
handler to input and output to the diskette. The additional disk handler code was provided primarily
to overcome an operating system bug. This bug is the result of an incorrect 16-bit compare of
buffer pointers that may occur during SIO transfers. Specifically, it occurs when a buffer ends on a
page boundary. However, since the result of this patch is to place a disk handler in RAM, it is
possible to customize DOS somewhat. The hardware in the disk drive itself is capable of another
function not supported by the resident disk handler. This function is a WRITE SECTOR WITHOUT
VERIFY command. Even though some reliability is sacrificed, disk writes occur faster. To perform
this customization from BASIC, you need to type:

            POKE 1913,80 

for fast Write (Write without Read Verify). If you want to restore the Write with Read verify, type:

            POKE 1913,87 

FMS is called by setting up an IOCB and calling CIO. FMS supports some special CIO functions
not available to other handlers:

            FORMAT FMS calls the disk handler to format the diskette. 
After a successful format, FMS writes some file structure data on the diskette.

            NOTE FMS returns the current value of the file pointer.
            POINT FMS sets the file pointer to a specified value.

The subsection on Random Access contains instructions on using NOTE and POINT.

Disk I/O

You can access all the standard file I/O calls through CIO. In BASIC this means using the I/O
commands, such as OPEN, CLOSE, GET, PUT and XIO. In assembly language you have to set
up the IOCB yourself and call CIO.

To do any disk I/O, you must first OPEN a file. The BASIC syntax for the OPEN command is:

            OPEN #IOCB,ICAX1,0,"D:MYPROG.BAS" 

The # IOCB selects one of the eight IOCBs available (see the CIO subsection In section 8, the
Operating System, for IOCB setup). You should avoid IOCBs #0, 6, and 7 since they are used by
the OS and BASIC at various times. ICAX1 is the OPEN type code. The bits for the type code are:

BIT 7 6 5 4 3 2 1 0

x x x x W R D A

            Where: A is Append
            D is Directory
            R is Read
            W is Write
            x is unused



101The Disk Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 9-1 Auxiliary Byte Layout for the OPEN Command 

The various values for ICAX1 are discussed in Section 5 of the OPERATING SYSTEM Manual.
Some of the key things to note about the various OPEN modes are:

            ICAX1=6 This is used to OPEN the diskette directory. Records READ are the
diskette directory entries.
            ICAX1=4 READ mode.
            ICAX1=8 WRITE mode. Any existing file opened in this mode is first deleted. 

The first bytes written will be at the start of the file.
            ICAX1=9 WRITE APPEND mode. The file is left intact. 

Bytes written to this file are put at the end of the file.
            ICAX1=12 UPDATE mode. This mode allows both READ and WRITE to the file. 

Bytes read and written start at the first byte in the file.
            ICAX1=13 Not supported.

There are two types of I/O you can use to transfer data between your program and the disk, record
or character.

Character I/O means that the data In a file is a sequential string of bytes. DOS interprets this list of
bytes as data, with none of the values being interpreted as control characters. An example of
character data (all values are in Hex):

            00 23 4F 55 FF 34 21. 

Record I/O means that data in a file is made up of a set of records. A record is a group of bytes
followed by an End of Line (EOL) character with the value $9B. An example of two records is:

            00 23 4F 55 FF 34 9B 21 34 44 9B
            |   record 1        | record 2 | 

Record and character I/O to files can be done in any arbitrary order. Indeed, data created as
records can be read as characters, and file data created as characters can be read as records.
The only difference between character and record I/O is that records must end with a $9B value.
$9B is treated as ordinary data when using character I/O.

BASIC supports record I/O quite well. The commands PRINT and INPUT can be used to write and
read records from files. BASIC does not completely support character I/O. The commands GET
and PUT allow you to read and write a single byte at a time. However, the OS has the ability to
read and write blocks of characters. This ability is not used by BASIC. In using this feature in the
OS, you must specify the length and address of the data block to be transferred. To use the
character block mode of the OS from BASIC, you can write an assembly language module to be
called from BASIC by the USR function. Figure 8-16 has an example of a subroutine to do
character block I/O.

The XIO command in BASIC is a general Input/Output statement that allows for direct
communication with CIO from BASIC., It is described in more detail in the following subsection.
Disk Utility Package
The Disk Utility Package (DUP) is a set of utilities for diskette management, familiarly seen as the
DOS menu. DUP executes commands by calling FMS through CIO. The commands are:

            A. DIRECTORY
            B. RUN CARTRIDGE
            C. COPY FILES
            D. DELETE FILES
            E. RENAME FILES
            F. LOCK FILES
            G. UNLOCK FILES
            H. WRITE DOS FILES
            I. FORMAT DISK
            J. DUPLICATE DISK
            K. SAVE BINARY FILE



102 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            L. LOAD BINARY FILE
            M. RUN AT ADDRESS
            N. WRITE MEM.SAV FILE
            O. DUPLICATE FILE

The following subsections describe each of these functions. However, for complete information on
these functions, refer to the DISK OPERATING SYSTEM II Manual.

Wild Cards

Many of the DUP commands require a filename specification. DOS recognizes two "wild cards"
that you can substitute for characters in a filename. Wild cards are represented by the special
characters, question mark (?) and asterisk (*).

These characters are used in filename descriptors where, for whatever reason, there exists some
uncertainty as to the exact filename. An example of this would be when a filename extension is not
known, for instance. Another example would be when you want to copy only files with a specific
extension such as OBJ.

The question mark (?) may be substituted for a single character. The asterisk (*) can stand for any
valid combination of characters or number of characters. The following examples illustrate the use
of these characters in a Directory command.

            *.BAS will list all files on a diskette in Drive 1 that end in BAS.
            D2:*.* will list all the program files on the Drive 2 diskette.
            PRO*.BAS will list all the program files on diskette in Drive 1 that begin with PRO and
have BAS as the extender.
            TEST?? will list all the program files on diskette in Drive 1 that begin with TEST
and have any combination of 

letters or numbers for the last two characters.

Disk Directory (A)

The Disk Directory contains a list of all the files on a diskette. This command will list the filenames,
the extender, and the number of sectors that the file occupies on the diskette. A partial list can be
generated by entering specific filename parameters. Wild cards can be used in the parameters.

RUN CARTRIDGE (B)

The 'B' command, Run Cartridge, is typed, DOS gives control of the system to whichever cartridge
is inserted. The response from that point on is dependent upon specific cartridges. BASIC, for
instance, will respond by printing READY on the screen.

If the diskette in drive 1 has not been changed since the DUP was loaded, and if a MEM.SAV file is
present on the diskette, then the contents of this file is copied back into RAM before control is
released to the cartridge. This file normally is used to store the contents of the portion of RAM that
DUP occupies when it is loaded. However, this file must already exist on the diskette when a call is
issued to load DUP. Before DUP is loaded, the RAM contents are written out to the diskette for
later retrieval. You can think of MEM.SAV and DUP as swapping places between the diskette and
RAM.

Copy File (C)

The Copy File command ('C'), is used to copy a file from a diskette in one disk drive to another
diskette in a second disk drive. You will be prompted to give file specifications for the file to
COPY-FROM, TO. The first file specification may contain wild cards, and can be used to indicate a
series of files to be copied. The second parameter is also generally a file specification, but may
also be a destination device such as E: (screen) or P: (printer). The second parameter may be
followed with a '/A? option, which indicates that the first named file should be appended to the
second file. This option should not be used with tokenized Basic files.



103The Disk Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Delete File (D)

This option allows you to delete one or more files from a diskette. Wildcards can be used in file
specification names. You can avoid having to respond to the delete verification promt by
appending a '/N' option to the file specification.

Rename File (E)

This option allows you to change the name of an existing file on a diskette. You must provide two
parameters, OLD NAME and NEW. The first parameter must be a complete file specification, but
the second is just the new file name. Wild cards are permitted for both names. If no device
specification is included, D1: is assumed. An error will be generated if the first file name doesn't
exist on the diskette, if the file is locked, or if the diskette is write protected.

Lock File (F)

This command is used to prevent a file from being inadvertently erased or modified. A locked file is
indicated by an asterisk (*) preceding its name in the directory. Note however, that the Format
command pays no attention to the Lock status of any file on a diskette.

Unlock File (G)

This option is used to Unlock a file that has been previously Locked. Both this and the Lock
commands may use wild cards.

Write DOS File (H)

This option must be used to create a copy of DOS on a formatted diskette, since they can't be
copied with a Copy command.

Format Diskette (I)

This option is used to create the sector and track information on a blank diskette so that it may be
used by DOS. If a bad sector is encountered during the formatting process, DOS will not continue.
A diskette with a bad sector cannot be formatted, and is useless. WARNING! Be very careful with
this command, for it will wipe out any existing file on the diskette.

Duplicate Disk (J)

This menu option is used to create an exact duplicate of any diskette that has been created and
maintained by DOS. This option can be used with either single or multiple drive systems.
Duplicating on a single drive system does require repeated manual swapping of the source and the
destination diskettes.

The duplication process occurs on a sector-by-sector basis. However, only those sectors that are
marked as in use by the Volume Table of Contents are copied.

Care should be taken in using this command, for it destroyes any files that may have resided on
the destination diskette. A good policy would be to place a write protect tab on the source diskette
to preclude a catastrophic mistake by typing the source and destination values in reverse order.

Binary Save (K)

This command is use to save the contents of memory locations in an object file (binary) format.
This format is also used by the ATARI Editor Assembler Cartridge. This format consists of two
header bytes of $FF, two bytes for the starting load address, and two bytes for the ending load
address. The remainder of the file is actual load data. You will be prompted to enter a filename and
the starting and ending addresses for the load. There is also two additional address values that
may optionally be entered. These are values that upon load will be placed In locations known as
INIT [$02EO,2] and RUN [$02E2,2]. If these locations are updated during a load, then the code
pointed to by the values in these locations will be executed.



104 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Binary Load (L)

This command is used to load a binary load file from the diskette into RAM memory. If values for
INIT and RUN values have been appended to this file, then it will function as a load-and-go routine.

Run At Address (M)

This command is used to transfer control to a machine language routine located in memory. This
is normally used to start a program that has been loaded, but did not have INIT or RUN values
appended to the file.

Create MEM.SAV (N)

This menu option is used to create a file called MEM.SAV. This file is used to save the contents of
memory that will be overlaid when the DUP is loaded in. Effectively then, MEM.SAV and DUP
swap places from RAM to disk. Note that MEM.SAV must be on the diskette in drive 1 to work. It
also takes about 20 seconds to swap memory out and load DUP in if MEM.SAV is used.

Duplicate File (O)

This option is provided to copy a file from one diskette to another in a single drive system.
Functionally, it is very similar to the single drive Copy command. The primary difference is that
Duplicate file can be used to copy a file created under DOS 1, whereas the Copy command
cannot.

Substituting the XIO Command for DUP Menu Options

The XIO command in BASIC is a general I/O statement that issues a direct call to the Centralized
Input/Output Subsystem. The format of the XIO command is:

            XIO command number, #iocb, auxialiary 1, auxialiary 2, file specification 

The XIO command can be used to perform functions that would normally require DUP to be
present. The command number for various DUP functions are shown below.

            COMMAND NUMBER FUNCTION
            3 OPEN
            5 GET Record
            7 GET Characters
            9 PUT Record
            11 PUT Characters
            12 CLOSE
            13 STATUS Request
            32 RENAME
            33 DELETE
            35 LOCK File
            36 UNLOCK File

Random Access
One common use of the diskette is to store records that may be accessed n an arbitrary order.
This is referred to as Random Access. Using the I/O commands in conjunction with the special
commands NOTE and POINT allows you to create and use random access files.

DOS keeps a file pointer for each file currently OPEN which tells the DOS the location of the next
byte to be accessed in the file. NOTE and POINT are used to find out the current value of this
pointer, or to set it to a specific value. The file pointer has two parameters, a sector number and a
byte number. The sector number is a value from 1-719 that tells DOS what sector on the diskette
the file pointer is pointing to. The byte number indicates the specific byte in the sector that will be
the next accessed. Figure 9-2 shows the value of the file pointer at different bytes within the file. All
values are hex. The file pointer values for the bytes in this file are given below the bytes in the file.



105The Disk Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 9-2 NOTE and POINT Values 

The above file was created in BASIC by the following program:

            10 OPEN #1,8,0,"D:FILE"
            20 ?#l;"ABC"
            30 ?#1;"DEF"
            40 ?#1;"GHIJK"
                :
                :         :REM Fill the rest of the sector
                :
            100 ?#1;"AB"  :REM This writes a record that crosses end of sector
            150 CLOSE #1 

The sector number of 50 was arbitrarily chosen for this example. The sector number changed to
51 because the file is longer than a single sector. FMS linked the file to the next available sector,
51. The record "AB" crosses the end of the first sector.

The byte count of the file pointer starts at 0 and is incremented until the end of the sector, $7D
(125 Decimal). DOS reserves the last 3 bytes of every sector for overhead data for the file. The
maximum byte number is 124 (0-124 = 125 total bytes). When the file reaches the end of a sector,
the byte number recycles to 0.

When the POINT command is used to set the file pointer, DOS checks that the sector pointed to
belongs to the file that is OPENed. If a file number mismatch is found, the POINT operation is not
allowed.

Figure 9-3 is a subroutine that may be used to save records, keep track of where they are, and
retrieve them in random access fashion.

            1000 REM THIS ROUTINE CREATES AND ACCESSES RANDOM ACCESS FILES FOR FIXED
            1001 REM LENGTH RECORDS
            1002 REM
            1003 REM ... COMMANDS ARE
            1004 REM CMD=1 WRITE  NTH RECORD
            1005 REM CMD=2 READ   NTH RECORD
            1006 REM CMD=3 UPDATE NTH RECORD
            1007 REM
            1008 REM RECORD$ IS THE INPUT/OUTPUT RECORD
            1009 REM N IS THE RECORD NUMBER
            1010 REM INDEX IS A TWO DIMENSIONAL ARRAY DIM'ED INDEX(1,RECNUM)
            1015 REM INDEX HOLDS THE NOTE VALUES FOR ALL RECORDS
            1020 REM THIS ROUTINE ASSUMES LOGICAL FILE #1 HAS BEEN OPENED FOR I/O
            1100 REM
            1120 REM ROUTINE BEGINS AT 1200
            1130 REM
            1200 ON CMD GOTO 2000,3000,4000
            2000 REM ............................
            2100 REM WRITE NTH RECORD
            2200 NOTE #1,X,Y
            2300 INDEX(SEC,N)=X:INDEX(BYTE,N)=Y
            2400 ? #1;RECORD$:RETURN
            3000 REM ............................
            3010 REM READ NTH RECORD
            3020 REM



106 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            3030 X=INDEX(SEC,N):Y=INDEX(BYTE,N)
            3040 POINT #1,X,Y
            3050 INPUT #1;RECORD$
            3060 RETURN
            4000 REM ............................
            4010 REM UPDATE NTH RECORD
            4020 REM
            4040 X=INDEX(SEC,N):Y=INDEX(BYTE,N)
            4050 POINT #1,X,Y
            4060 ? #1;RECORD$
            4070 RETURN

            Figure 9-3 NOTE and POINT Example

FMS Disk Utilization
The map below shows the overall layout that DOS uses in managing disk sector utilization for a
standard 720 sector diskette.

            +--------------+
            | BOOT record  |  Sector 1
            +--------------+
            |  FMS BOOT    |  Sector 2
            =    file      =
            |  'DOS.SYS'   |  Sector 40 ($28)
            +--------------+
            |     Disk     |  Sector 41 ($29)
            =   Utilities  =
            |    Package   |  Sector 83 ($53)
            +--------------+
            |     User     |  Sector 84 ($54)
            =     file     =
            |     Area     |  Sector 359 ($167)
            +--------------+
            | VOLUME TABLE |  Sector 360 ($168)
            | of CONTENTS  |
            +--------------+
            |     File     |  Sector 361 ($169)
            =  Directory   =
            |              |  Sector 368 ($170)
            +--------------+
            |     User     |  Sector 369 ($171)
            =     file     =
            |     Area     |  Sector 719 ($2CF)
            +--------------+
            |    Unused    |  Sector 720 ($2D0)
            +--------------+ 

FMS Boot Record

The first sector on a diskette is reserved for FMS boot usage. This record contains information
concerning the FMS system configuration, as well as an indication of whether the DOS.SYS is
present on the diskette or not.

If the DOS files are present they usually begin at sector 2 and extend for 81 sectors.

Volume Table of Contents

Sector 360 is reserved for the FMS Volume Table of Contents (VTOC). This table contains a bit
map that shows which sectors on the diskette are allocated and which are free. Since VTOC is
referred to before every disk write, sector 360 was chosen to hold VTOC. This sector is in the
middle of the diskette and has the minimum average access time of any diskette sector. The bit
map begins in byte 10 of VTOC and extends to byte 99. Each byte in this area contains allocation
information for eight sectors. A 0 in a bit position indicates the corresponding sector is in use, and
a 1 Indicates it is available. The volume bit map is organized as shown below:

             7             0
            +-+-+-+-+-+-+-+-+
            |  1 2 3 4 5 6 7|  Byte 10 of VTOC
            +-+-+-+-+-+-+-+-+
            |8 9 . . . . . .|  11
            =               =
            |               |  99



107The Disk Operating System

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            +-+-+-+-+-+-+-+-+ 

File Directory Format

Eight sectors (361-368) are reserved for a diskette file directory, with each sector able to store
information for up to eight files. Thus, the maximum number of files that can be placed on a single
diskette is 64.

Each file directory entry consists of 16 bytes. The format of each entry is shown on the next page.

            +---------------+
            |   flag byte   | Byte 0
            +---------------+
            |  sector  (lo) |      1
            +               +
            |    count (hi) |      2
            +---------------+
            | starting (lo) |      3
            +  sector       +
            |  number  (hi) |      4
            +---------------+
            |           (1) |      5
            +               +
            |           (2) |      6
            +               +
            |           (3) |      7
            +               +
            |  file     (4) |      8
            +               +
            |  name     (5) |      9
            +               +
            |  primary  (6) |     10
            +               +
            |           (7) |     11
            +               +
            |           (8) |     12
            +---------------+
            |  file     (1) |     13
            +               +
            |  name     (2) |     14
            +               +
            | extension (3) |     15
            +---------------+

            The flag byte has the following bit assignments:
            Bit-7 = 1 if the file has been deleted.
            Bit-6 = 1 if the file is in use.
            Bit-5 = 1 if the file is locked.
            Bit-0 = 1 if OPEN for output. 

FMS File Sector Format

The format of a sector in a diskette file is shown below:

             7             0
            +-+-+-+-+-+-+-+-+
            |               | Byte 0
            =   D A T A     =
            |               |    124
            +-+-+-+-+-+-+-+-+
            |  file     |hi |    125
            +-+-+-+-+-+-+-+-+
            |forward pointer|    126
            +-+-+-+-+-+-+-+-+
            |S| byte count  |    127
            +-+-+-+-+-+-+-+-+ 

The file # is information that FMS uses to ensure file integrity is maintained. This field contains the
value of the directory position for that file. If there is ever a mismatch between the file's position in
the directory and the file number field in a sector, the FMS will generate an error, and abort
whichever operation was being performed.



108 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The forward pointer is a 10-bit pointer that indicates the next sector in a file. This is described as a
forward linked list, with the forward pointer of the last sector equal to 0.

If the S bit is set (i.e., equal to 1), then the sector is a "short sector" and contains less than 125
data bytes.

The byte count field contains the number of bytes in the sector.

THE AUTORUN.SYS FILE
DOS contains a feature that allows a special file to be loaded into memory each time the system is
powered-up. This can be data to customize features of the system such as setting up different
margin values, or changing the default colors. If desired this can be a machine language program
to be executed before the normal DOS boot process occurs.

This file must be 6 binary load file with the name AUTORUN.SYS. To make this an executable file,
an address value must be loaded into the INIT [$02E0,2] or the RUN [$02E2,2] locations. The
difference between these two parameters is that the code pointed to by INIT will be executed as
soon as that location is loaded, whereas code pointed to by RUN will only be executed after the
load process is complete. To return control to DOS after executing an AUTORUN.SYS file,
terminate your code with an RTS.

The AUTORUN.SYS file can be extremely useful in setting up "load- and-go" assembly language
routines. It also provides a method of reconfiguring the OS by "stealing" certain of the system
vectors before DOS has a chance to be initialized. Among other things, this feature can be used to
provide a certain measure of diskette protection. Refer to Figure 8-3 for an example of setting up
an AUTORUN.SYS file to reset the MEMLO pointer. 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Atari Basic

Chapter

X



110 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

10 Atari Basic

WHAT IS ATARI BASIC?
ATARI BASIC is an interpreted language. This means programs can be run when they are entered
without intermediate stages of compilation and linking. The ATARI BASIC interpreter resides in an
8K ROM cartridge in the left slot of the computer. It encompasses addresses A000 through BFFF.
At least 8K of RAM is required to run BASIC.

To use ATARI BASIC effectively, you must know its strengths and weaknesses. With this
information, programs can be written that make good use of the assets and features of ATARI
BASIC.

Strengths of ATARI BASIC

· It supports the operating system graphics - Simple graphics calls can be made to display
information on the screen.

· It supports the hardware - Such calls as SOUND, STICK and PADDLE are simple
interfaces to the hardware of the computer.

· Simple assembly interface - The USR function allows easy user access to assembly
language routines.

· ROM based interpreter - The BASIC interpreter is in ROM, which prevents accidental
modification by the user program.

· DOS support - Specialized calls such as NOTE and POINT (DOS 2.0S) allow the user to
randomly access a disk through the disk operating system.

· Peripheral support - Any peripheral recognized by the operating system can be accessed
from a BASIC program.

Weaknesses of ATARI BASIC

· No support of integers - All numbers are stored as 6- byte BCD floating point numbers.
· Slow math package - Since all numbers are six bytes long, math operations become rather

slow.
· No string arrays - Only one-dimensional strings can be created.

HOW ATARI BASIC WORKS
The workings of the BASIC interpreter are summarized as follows:

· BASIC gets a line of input from the user and converts it into a tokenized form.
· It then puts this line into a token program.
· This program is then executed.

The details of these operations are discussed in the following four sections.
· The Tokenizing Process
· The Token File Structure
· The Program Execution Process
· System Interaction

THE TOKENIZING PROCESS
In simple terms, the tokenization of a line of code in BASIC looks like this:
         1. BASIC gets a line of input
         2. It then checks for legal syntax
         3. During syntax checking it is tokenized
         4. The tokenized line is moved into the token program
         5. If the line is in immediate mode it is executed

To better understand the tokenizing process, some terms must first be defined:

Token An 8-bit byte containing a particular
interpretable code.



111Atari Basic

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Statement The first executable token of a statement that
tells BASIC to
interpret the tokens that follow in a
particular way.

Line A complete "sentence" of tokens that causes
BASIC to perform
some meaningful task. In LIST form,
statements are separated by
colons.

Command One or more statements preceded either by a
line number in the
range of 0 to 32767 or an immediate mode
line with no number.

Variable A token that is an indirect pointer to its
actual value;
can be changed without changing the token.

Constant A 6-byte BCD value preceeded by a special
token. This value
remains unchanged throughout program
execution.

Operator Any one of 46 tokens that in some way
move or modify the values that follow them.

Function A token that when executed returns a value
to the program.

EOL End of Line. A character with the value 9B
hex.

BCD Binary code decimal. A number that uses the
6502 decimal mode.

BASIC begins the tokenizing process by getting a line of input. This input will be obtained from one
of the handlers of the operating system. Normally it is from the screen editor; however with the
ENTER command, any device can be specified. The call BASIC issues is a GET RECORD
command, and the data returned is ATASCII information terminated by an EOL. This data is stored
by CIO into the BASIC Input Line Buffer from 580 to 5FF hex.

After the record is returned, the syntax checking and tokenizing processes begin. First BASIC
looks for a line number. If one is found, it is converted into a 2- byte integer. If no line number is
present, it is assumed to be in immediate mode and the line-number 8000 hex is assigned to it.
These will be the first two tokens of the tokenized line. This line is built in the token output buffer
that is 256 bytes long and resides at the end of the reserved operating system RAM.

The next token is a dummy byte reserved for the byte count (or offset) from the start of this line to
the start of the next line. Following that is another dummy byte for the count of the start of this line
to the start of the next statement. These values will be set when tokenization is complete for the
line and the statement respectively. The use of these values is discussed in the program execution
process section.

BASIC now looks for the command of the first statement of the input line. A check is made to
determine if this is a valid command by scanning a list of legal commands in ROM. If a match is
found, then the next byte in the token line becomes the number of the entry in the ROM list that
matched. If no match is found, a syntax error token is assigned to that byte and BASIC stops
tokenizing, copies the rest of the input buffer in ATASCII format to the token output buffer, and
prints the error line.



112 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Assuming a good line, one of seven items can follow the command: a variable, a constant, an
operator, a function, a double quote, another statement, or an EOL. BASIC tests if the next input
character is numeric. If not then it compares that character and those following against the entries
of the variable name table. If this is the first line of code entered in the program then no match is
found. The characters are then compared against the function and operator tables. If no match is
found there then BASIC assumes that this is a new variable name. Since this is the first variable it
is assigned the first entry in the variable name table. The characters are copied out of the input
buffer and stored into the name table with the most significant bit (MSB) set on the last byte of the
name. Eight bytes are then reserved in the variable value table for this entry. (See the variable
value table discussion in the section, "Token File Structure".)

The token that ends up in the tokenized line is the variable number minus one; with the MSB set.
Thus the token of the first variable entered would be 80 Hex, the second would be 81, and so on
up to FF for a total of 128 unique variable numbers.

If a function is found, then its entry number in the operator function table is assigned to the token.
Functions require certain sequences of parameters; these are contained in syntax tables, and if
they are not matched, a syntax error will result.

If an operator is found, then a token is given its table entry number. Operators can follow each
other in a rather complex fashion (such as multiple parentheses), so the syntax checking of them
is a bit complicated.

In the case of the double quotes, BASIC assumes that a character string is following and assigns a
0F hex to the output token and reserves a dummy byte for the string length. The characters are
moved from the input buffer into the output buffer until the second set of quotes is found. The
length byte is then set to the character count.

If the next characters in the input buffer are numeric, BASIC converts them into a 6-byte BCD
constant. A 0E hex token will be put in the output buffer, followed by the six byte constant.

When a colon is encountered, a 14 hex token is inserted in the output buffer and the offset from
the start of the line is stored in the dummy byte that was reserved for the count to the start of the
next statement. At this point another dummy byte is reserved and the process goes back to get a
command.

When the EOL is found, a 16 hex token is stored and the offset from the start of the line is put in
the dummy byte for the line offset. At this point, tokenization is complete and BASIC moves the
token line into the token program. First it searched the program for that line number. If it is found it
replaces the old line with the new one. If it is not found, then it inserts the new line in the correct
numerical sequence. In both cases, the data following the line will be moved either up or down in
memory to allow for an expanding and contracting program size.

BASIC now checks if the tokenized line is an immediate mode line. If so, that line is executed
according to the methods described in the interpretive process; if not, BASIC goes back to get
another line of input.

If at any time during the tokenizing process the length of the token line exceeds 256 bytes, an
ERROR 14 message (line too long) is sent to the screen and BASIC goes back to get the next line
of input.

An example line of input and its token form looks like this (all token values are hexadecimal):

            10 LET X=1 : PRINT X

0A 00 13 0F 06 80 2D 0E 40 01
00 00
00 00

14 13 20 80 16



113Atari Basic

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Line
10

Line
Offset

Stateme
nt
Offset

Let X = Numeri
c
Constan
t

1 End Of
Stateme
nt

Stateme
nt
Offset

Print X End Of
Line

            Figure 10-1 Example Line of Tokenized Input 

COMMANDS OPERATORS FUNCTIONS
HEX DEC HEX DEC HEX DEC
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

REM
DATA
INPUT
COLOR
LIST
ENTER
LET
IF
FOR
NEXT
GOTO
GO TO
GOSUB
TRAP
BYE
CONT
COM
CLOSE
CLR
DEG
DIM
END
NEW
OPEN
LOAD
SAVE
STATUS
NOTE
POINT
XIO
ON
POKE
PRINT
RAD
READ
RESTORE
RETURN
RUN
STOP
POP
?
GET
PUT
GRAPHICS
PLOT
POSITION
DOS
DRAWTO
SETCOLOR
LOCATE
SOUND
LPRINT
CSAVE
CLOAD
[IMPLIED LET]
ERROR -
[SYNTAX]

0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

[NUM CONST]
[STR CONST]
[NOT USED]
[NOT USED]
,
$
: [STMT END]
;
[LINE END]
GOTO
GOSUB
TO
STEP
THEN
#
<= [NUMERICS]
<>
>=
<
>
=
*
+
-
/
NOT
OR
AND
(
)
= [ARITHM ASSIGN]
= [STRING ASSIGN]
<= [STRINGS]
<>
>=
<
>
=
+ [UNARY]
-
( [STRING LEFT PAREN]
( [ARRAY LEFT PAREN]
( [DIM ARRAY LEFT PAREN]
( [FUN LEFT PAREN]
( [DIM STR LEFT PAREN]
, [ARRAY COMMA]

3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

STR$
CHR$
USR
ASC
VAL
LEN
ADR
ATN
COS
PEEK
SIN
RND
FRE
EXP
LOG
CLOG
SQR
SGN
ABS
INT
PADDLE
STICK
PTRIG
STRIG

THE TOKEN FILE STRUCTURE
The token file contains two major segments: (1) a group of zero page pointers that point into the
token file, and (2) the actual token file itself. The zero page pointers are 2-byte values that point to
various sections of the token file. There are nine 2-byte pointers and they are in locations 80 to 91
hex. Following is a list of the pointers and the sections of the token file they reference.



114 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Pointer
(hex)

Token File Section (Contiguous Blocks)

LOMEM
80,81

Token output buffer - This is the buffer BASIC uses to tokenize one line of
code. It is 256 bytes long. This buffer resides at the end of the operating
system's allocated RAM.

VNTP
82,83

Variable name table - A list of all the variable names that have been entered in
the program. They are stored as ATASCII characters, each new name stored in
the order it was entered. Three types of name entries exist:
1. Scalar variables - MSB set on last character in name.
2. String variables - last character is a with the MSB set.
3. Array variables - last character is a with the MSB set.

VNTD
84,85

Variable name table dummy end - BASIC uses this pointer to indicate the end
of the name table. This normally points to a dummy zero byte when there are
less than 128 variables. When 128 variables are present, this points to the last
byte of the last variablename.



115Atari Basic

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

VVTP
86,87

Variable value table - This table contains current information on each variable.
For each variable in the name table, eight bytes are reserved in the value table.
The information for each variable type is:

A scalar variable contains a numeric value. An example is X=1. The scalar is
X and its value is 1, stored in 6-byte BCD format. An array is composed of
numeric elements stored in the string/array area and has one entry in the value
table. A string, composed of character elements in the string/array area, also
has one entry in the table. The first byte of each value entry indicates the type
of variable: 00 for a scalar, 40 for an array, and 80 for a string. If the array or
string has been dimensioned, then the LSB is set on the first byte. The second
byte contains the variable number. The first variable entry is number zero, and
if 128 variables were present, the last would be 7F.

In the case of the scalar variable the third through eighth byte contain the
6-byte BCD number that has currently been assigned to it. For arrays and
strings, the third and fourth bytes contain an offset from the start of the
string/array area (described below) to the beginning of the data.

The fifth and sixth bytes of an array contain its first dimension. The
quantity is a 16-bit integer and its value is 1 greater than the user
entered. The seventh and eighth bytes are the second dimension, also a value
of 1 greater.

The fifth and sixth bytes of a string are a 16 bit integer that contains its current
length. The seventh and eighth bytes are its dimension (up to 32767 bytes in
size).

STMTAB
88,89

Statement Table - This block of data includes all the lines of code that have
been entered by the user and tokenized by BASIC, and it also includes the
immediate mode line. The format of these lines is described in the tokenized
line example of the section on the
tokenizing process.

STMCUR
8A,8B

Current Statement - This pointer is used by BASIC to reference
particular tokens within a line of the statement table. When BASIC is waiting
for input, this pointer is set to the beginning of the immediate mode line.

STARP
8C,8D

String/Array area - This block contains all the string and array data. String
characters are stored as one byte ATASCII entries, so a string of 20 characters
will require 20 bytes. Arrays are stored with 6-byte BCD numbers for each
element. A 10-element array would require 60 bytes. This area is allocated and
subsequently enlarged by each dimension statement encountered, the amount
being equal to the size of a string dimension or six times the size of an array
dimension.



116 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

RUNSTK
8E,8F

Run time stack - This software stack contains GOSUB and
FOR/NEXT entries. The GOSUB entry consists of four bytes. The first is a 0
byte indicating GOSUB, followed by the 2-byte integer line number on which
the call occurred. This is followed by the offset into that line so the RETURN
can come back and execute the next statement. The FOR/NEXT entry contains
16 bytes. The first is the limit the counter variable can reach. The second byte
is the step or counter increment. Each of these quantities is in 6-byte BCD
format. The thirteenth byte is the counter variable number with the MSB set.
The fourteenth and fifteenth bytes are the line number, and the sixteenth is the
line offset to the FOR statement.

MEMTOP
90,91

Top of application RAM - This is the end of the user program.
Program expansion can occur from this point to the end of free RAM, which is
defined by the start of the display list. The FRE function returns the amount of
free RAM by subtracting MEMTOP from HIMEM (2E5,2E6). Note that the
BASIC MEMTOP is not the same as the OS variable called MEMTOP.

THE PROGRAM EXECUTION PROCESS
Executing a line of code is a process that involves reading the tokens that were created during the
tokenization process. Each token has a particular meaning that causes BASIC to execute a
specific series of operations. The method of doing this requires that BASIC get one token at a time
from the token program and then process it. The token is an index into a jump table of routines, so
a PRINT token will point indirectly to a PRINT processing routine. When that processing is
complete, BASIC returns to get the next token. The pointer that is used to fetch each token is
called STMCUR and is at 8A and 8B.

The first line of code that is executed in a program is the immediate mode line. This is usually a
RUN or GOTO. In the case of the RUN, BASIC gets the first line of tokens from the statement
table (tokenized program) and processes it. If all the code is in-line, then BASIC merely executes
consecutive lines.

If a GOTO is encountered, then the line to go to must be found. The statement table contains a
linked list of tokenized BASIC lines. These lines are stored in ascending numerical order. To find a
line somewhere in the middle of the table, BASIC starts by finding the first line of the program.

The address of the first line is contained in the STMTAB pointer at 88 and 89. This address is now
stored in a temporary pointer. The first 2 bytes of the first line are its line number which is
compared against the requested line number. If the first number is less, then BASIC gets the next
line by adding the third byte of the first line to the temporary pointer. The temporary pointer will now
be pointing to the second line. Again the first 2 bytes of this new line are compared to he requested
line, and if they are less, the third byte is added to the pointer. If a line number does match, the
contents of the temporary pointer are moved into STMCUR and BASIC fetches the next token
from the new line. Should the requested line number not be found, an ERROR 12 is generated.

The GOSUB involves more processing than the GOTO. The line finding routine is the same, but
before BASIC goes to that line it sets up an entry in the Run Time Stack. It allocates four bytes at
the end of the stack and stores a 0 in the first byte to indicate a GOSUB stack entry. It then stores
the line number it was on when the call was made into the next two bytes of the stack. The final
byte contains the offset in bytes from the start of that line to where the GOSUB token was found.
BASIC then executes the line it looked up. When the RETURN is found, the entry on the stack is
pulled off, and BASIC returns to the calling line.

The FOR command causes BASIC to allocate 16 bytes on the Run Time Stack. The first six bytes
are the limit the variable can reach in 6-byte BCD format. The second six bytes are the step, in the
same format. Following these, BASIC stores the variable number (MSB set) of the counting
variable. It then stores the present line number (two bytes) and the offset into the line. The rest of
the line is then executed.



117Atari Basic

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

When BASIC finds the NEXT command, it looks at the last entry on the stack. It makes sure the
variable referenced by the NEXT is the same as the one on the stack and checks if the counter
has reached or exceeded the limit. If not then BASIC returns to the line with the FOR statement
and continues execution. If the limit was reached, then the FOR entry is pulled off the stack and
execution continues from that point.

When an expression is evaluated, the operators are put onto an operator stack and are pulled off
one at a time and evaluated. The order in which the operators are put onto the stack can either be
implied, in which case BASIC looks up the operator's precedence from a ROM table, or the order
can be explicitly stated by the placement of parentheses.

Pressing the BREAK key at any time causes the operating system to set a flag to indicate this
occurrence. BASIC checks this flag after each token is processed. If it finds it has been set, it
stores the line number at which this occurred, prints out a "STOPPED AT LINE XXXX" message,
clears the BREAK flag and waits for user input. At this point the user could type CONT and
program execution would continue at the next line.

SYSTEM INTERACTION
BASIC communicates with the Operating System primarily through the use of 1/0 calls to the
Central 1/0 Utility (CIO). Following is a list of user BASIC calls and the corresponding operating
system IOCB (Input/Output Control Block) setups.

BASIC OS

OPEN #1,12,0,"E:" IOCB=1
Command=3 (OPEN)
Aux1=12 (Input/Output)
Aux2=0
Buffer Address=ADR("E:")

GET #1,X IOCB=1
Command=7 (Get Characters)
Buffer Length=0
Character returned in accumulator

PUT #1,X IOCB=1
Command=11 (Put Characters)
Buffer Length=0
Character output through accumulator

INPUT #1,A$ IOCB=1
Command=5 (Get Record)
Buffer Length=Length of A$ (not over 120)
Buffer Address=Input Line Buffer

PRINT #1,A$ IOCB=1
BASIC uses a special put byte vector in the
IOCB to talk
directly to the handler.

XIO 18,#6,12,0,"S:" IOCB=6
Command=18 (Special - Fill)
Aux1=12
Aux2=0

SAVE/LOAD: When a BASIC token program is saved to a device, two blocks of information are
written. The first block consists of seven of the nine zero page pointers that BASIC uses to
maintain the token file. These are LOMEM(80,81) through STARP (8C,8D). There is one change
made to these pointers when they are written out: The value of LOMEM is subtracted from each of
the 2-byte pointers, and these new values are written to the device. Thus the first 2-bytes written
will be 0,0.



118 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The second block of information written consists of the following token file sections: (1) The
variable name table, (2) the variable value table, (3) the token program, and (4) the immediate
mode line.

When this program is loaded into memory, BASIC looks at the OS variable MEMLO (2E7,2E8) and
adds its value to each of the 2-byte zero page pointers as they are read from the device. These
pointers are placed back on page zero and then the values of RUNSTK(8E,8F) and MEMTOP
(90,91) are set to the value in STARP.

Next, 256 bytes are reserved in memory above the value of MEMLO to allocate space for the
token output buffer. Then the token file information, consisting of the variable name table through
the immediate mode line, is read in. This data is placed in memory immediately following the token
output buffer.



119Atari Basic

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure 10-2 OS and BASIC Pointers (No DOS Present) 

IMPROVING PROGRAM PERFORMANCE
Program performance can be improved in two ways. First the execution time can be decreased (it
will run faster) and second, the amount of space required can be decreased, allowing it to use less
RNA. To attain these two goals, the following lists can be used as guidelines. The methods of
improvement in each list are primarily arranged in order of decreasing effectiveness. Therefore the
method at the top of a list will have more impact than one on the bottom.

Speeding Up a BASIC Program

· Recode - Because BASIC is not a structured language, the code written in it tends to be
inefficient. After many revisions it becomes even worse. Thus, the time spend to restructure
the code is worthwhile.

· Check algorithm logic - Make sure that the code to execute a process is as efficient as
possible.



120 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

· Put frequently called subroutines and FOR/NEXT loops at the start of the program - BASIC
starts at the beginning of a program to look for a line number, so any line references near
the end will take longer to reach.

· For frequently called operations within a loop use in-line code rather than subroutines - The
program speed can be improved here since BASIC spends time adding and removing
entries from the run time stack.

· Make the most frequently changing loop of a nested set the deepest - In this way, the run
time stack will be altered the fewest number of times.

· Simplify floating point calculations within the loop - if a result is obtained by multiplying a
constant by a counter, time could be saved by changing the operation to an add of a
constant.

· Set up loops as multiple statements on one line - In this way the BASIC interpreter will not
have to get the next line to continue the loop.

· Disable the screen display - If visual information is not important for a period of time, up to a
30 percent time savings can be made with a POKE 559,0.

· Use a faster graphics mode or a short display list - If a full screen display is not necessary
then up to 25 percent time savings can be made.

· Use assembly code - Time savings can be made by encoding loops in assembler and using
the USR function.

Saving Space In A BASIC Program

· Recode - As mentioned previously, restructuring the program will make it more efficient. It
will also save space.

· Remove remarks - Remarks are stored as ATASCII data and merely take up space in the
running program.

· Replace a constant used three times or more with a variable BASIC allocates seven bytes
for a constant but only one for a variable reference, so six bytes can be saved each time a
constant is replaced with a variable assigned to that constant's value.

· Initialize variables with a read statement - A data statement is stored in ATASCII code, one
byte per character, whereas an assignment statement requires seven bytes for one
constant.

· Try to convert numbers used once and twice to operations of predefined variables - An
example is to define Z1 to equal 1, Z2 to equal 2, and if the number 3 is required, replace it
with the expression Z1 + Z2.

· Set frequently used line numbers (in GOSUB and GOTO) to predefined variables - If the
line 100 is referenced 50 times, approximately 300 bytes can be saved by equating Z100 to
100 and referencing Z100

· Keep the number of variables to a minimum - Each new variable entry requires 8 more
bytes in the variable value table plus a few bytes for its name.

· Clean up the value and name tables - Variable entries are not deleted from the value and
name tables even after all references to them are removed from the program. To delete the
entries LIST the program to disk or cassette, type NEW, then ENTER the program.

· Keep variable names as short as possible - Each variable name is stored in the name table
as ATASCII information. The shorter the names, the shorter the table.

· Replace text used repeatedly with strings - On screens with a lot of text, space can be
saved by assigning a string to a commonly used set of characters.

· Initialize strings with assignment statements - An assignment of a string with data in quotes
requires less space than a READ statement and a CHR$ function.

· Concatenate lines into multiple statements - Three bytes can be saved each time two lines
are converted into two statements on one line.

· Replace once used subroutines with in-line code - The GOSUB and RETURN statements
waste bytes if used only once.

· Replace numeric arrays with strings if the data values do not exceed 255 - Numeric array
entries require six bytes each, whereas string elements only need one.

· Replace SETCOLOR statements with POKE commands - This will save 8 bytes.
· Use cursor control characters rather than POSITION statements The POSITION statement

requires 15 bytes for the X,Y parameters whereas the cursor editing characters are one
byte each.

· Delete lines of code via program control - See the advanced programming techniques



121Atari Basic

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

section.
· Modify the string/array pointer to load predefined data - By changing the value in STARP,

string and array information can be saved.
· Small assembly routines can be stored in USR calls - For example

X=USR(ADR("hhh*LVd"),16).
· Chain programs - An example would be an initialization routine that is run first and then

loads and executes the main program.

ADVANCED PROGRAMMING TECHNIQUES
An understanding of fundamentals of ATARI BASIC makes it possible to write some interesting
applications. These can be strictly BASIC operations, or they can also involve features of the
operating system.

Example 1 - String Initialization - This program will set all the bytes of a string of any length to the
same value. BASIC copies the first byte of the source string into the first byte of the destination
string, then the second, third, and so on. By making the destination string the second byte of the
source, the same character can be stored throughout the entire string.

            10 REM STRING INITIALIZATION
            20 DIM A$(1000)
            30 A$(l)="A":A$(1000)="A"
            40 A$(2)=A$

Example 2 - Delete Lines Of Code - By using a feature of the operating system, a program can
delete or modify lines of code within itself. The screen editor can be set to accept data from the
screen without user input. Thus by first setting up the screen, positioning the cursor to the top, and
then stopping the program, BASIC will be getting the commands that have been printed on the
screen.

            10 REM DELETE LINE EXAMPLE
            20 GRAPHICS 0:POSITION 2,4
            30 ? 70:? 80:? 90:? "CONT"
            40 POSITION 2,0
            50 POKE 842,13:STOP
            60 POKE 842,12
            70 REM THESE LINES
            80 REM WILL BE
            90 REM DELETED

Example 3 - Player/Missile (P/M) Graphics With Strings - A fast way to move player/missile
graphics data is shown in this example. A dimensioned string has its string/array area offset value
changed to point to the P/M graphics area. Writing to this string with an assignment statement will
now write data into the P/M area at assembly language rates.

            100 REM PLAYER/MISSILE EXAMPLE
            110 DIM A$(512),B$(20)
            120 X=X+1:READ A:IF A<>-l THEN B$(X,X)=CHR$(A):GOTO 120
            130 DATA 0,255,129,129,129,129,129,129,129,129,255,0,-1
            2000 POKE 559,62:POKE 704,88
            2020 I=PEEK(106)-16:POKE 54279,I
            2030 POKE 53277,3:POKE 710,224
            2040 VTAB=PEEK(134)+PEEK(135)*256
            2050 ATAB=PEEK(140)+PEEK(141)*256
            2060 OFFS=I*256+1024-ATAB
            2070 HI=INT(OFFS/256):LO=OFFS-HI*256
            2090 POKE VTAB+2,LO:POKE VTAB+3,HI
            3000 Y=60:Z=100:V=1:H=1
            4000 A$(Y,Y+11)=B$:POKE 53248,Z
            4010 Y=Y+V:Z=Z+H
            4020 IF Y>213 OR Y<33 THEN V=-V
            4030 IF Z>206 OR Z<49 THEN H=-H



122 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            4420 GOTO 4000 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Appendix A.
Memory

utilization

Chapter

XI



124 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

11 Appendix A. Memory utilization

Memory utilization with the Atari Home Computer can be difficult. Much of the memory is
commandeered by the operating system, the resident cartridge, or the DOS, leaving very little
under the direct control of the programmer. This gives the programmer very little freedom in laying
out memory utilization for a program. With proper planning this need not be a serious problem.

PAGE ZERO

The most important RAM for any assembly language programmer is page zero. Page zero is
absolutely essential for pointers and is very useful for heavily used variables, because code written
for page zero variables is more compact and runs faster. Hence the assembly language
programmer wants to know how many locations on page zero can be stolen for his own use. This
appendix will not cover the use of page zero locations as they are defined and used by firmware.
Instead, it will address only their use when the firmware's function is disabled or ignored.

The lower half of page zero (addresses $00-$80) is reserved for use by the operating system. The
128 bytes here are required for the entire array of services that the operating system provides.
Most programs will use only a portion of those services. Thus, many locations in this region will not
be used by the operating system during the program's execution. In particular, the 43 bytes from
$50 to $7A are used only by the screen editor and display handler. Most programs will use custom
display lists with their own display handlers. These 43 bytes would then become available during
program execution. Similar reasoning applied to other locations dedicated to special functions
would free even more.

Unfortunately, there is a major flaw in this reasoning. The software department at Atari is
constantly evaluating the performance of the operating system and making changes in the code.
There are now two versions of the operating system -- Rev A and Rev B. They are functionally
almost identical; software that runs under Rev A will almost certainly run under Rev B. More
revisions are contemplated and it is highly probable that the under utilization of those 43 bytes will
be corrected in future revisions of the operating system. Thus, any software packages that steal
those 43 bytes, or any other bytes from the lower half of page zero, will probably malfunction if run
under a future operating system. Therefore, commercially offered software should not steal any
bytes from the lower half of page zero.

The programmer must look to the upper half of page zero for free bytes. These 128 bytes are
reserved for use by the cartridge. If no cartridge is in place, they are free. If a cartridge is in place,
some bytes will be reserved for the programmer. The BASIC cartridge leaves only 7 bytes for the
use of the programmer -- $CB through $D1. The programmer who must have more page zero
bytes has only one option: the bytes used by the floating point package ($D4 to $FF). These 44
bytes may be taken if the floating point package is not used by the programmer's routines and if
those routines do not themselves call the floating point package. The programmer does not have
unlimited use of these bytes; they must not be used by any interrupt routines, as such routines
might strike during a floating point operation called by BASIC. There are no other bytes on the
upper half of page zero usable by the programmer.

The programmer working in the BASIC environment is seldom interested in the high performance
and compactness that page zero offers; after all, if high speed and compactness were primary
concerns, the programmer would not have chosen BASIC as a delivery language. The
programmer most interested in large amounts of page zero is the assembly language
programmer. A pure assembly language program does not need any cartridge installed to run;
therefore it should have access to all 128 bytes of the upper half of page zero. In practice this is
not quite so simple, for an assembly language program must be debugged, and the only
convenient way to do this at present is with the debugger in the Atari Assembler-Editor cartridge.
Assembly language programmers will note with chagrin that this cartridge only reserves 32 bytes
for their own use. While this is entirely adequate for virtually any program it is not enough to sate
the appetite of a high-performance program. There are 30 more bytes that are not used by the
debugger portion of the cartridge. These are: $A4, $A5, $AD, $AE, $DB through $E5, $EA through
$F1, $F5, $F6, $F9 through $FB, $FE, and $FF. If these bytes are used the programmer must not
return to the Editor or the Assembler or bad things may happen. Furthermore, the mini-assembler
inside the debugger must not be used.



125Appendix A. Memory utilization

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

If you use other cartridges or disk based languages, you are on your own. Many of these systems
use even more of page zero.

ABSOLUTE RAM

Another problem the programmer faces is presented by the DOS. It is very desirable to write
programs that run on either 16K cassette systems or 48K diskette systems. Unfortunately, such
systems have very little free RAM in common, for the DOS and DUP would almost fill the RAM of
the 16K system. There are several solutions to this problem. One is to produce two different
versions of the code, a disk version and a cassette version. The two programs would be orged to
different locations. This means that customers who buy the cassette version will not be able to
transport it to a diskette if they upgrade their systems.

There is another way. Page six is common free RAM for all systems. Variables and vectors can be
placed on page six and used by cassette-based software or diskette-based software. A directory of
routine addresses can be computed and placed at run-time onto page six. Machine language
routines can then jump through the page six directory to the routines elsewhere in RAM. The
technique can be difficult to execute; it is not recommended for large assembly language projects.
Its greatest value is with medium-size machine language routines (about 1K-2K) embedded inside
BASIC programs. 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Appendix B.
Human

engineering

Chapter

XII



127Appendix B. Human engineering

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

12 Appendix B. Human engineering

The ATARI Home Computer is first and foremost a consumer computer. The hardware was
designed to make this computer easy for consumers to use. Many of the hardware features protect
the consumer from inadvertent errors. Software written for this computer should reflect an equal
concern for the consumer. The average consumer is unfamiliar with the conventions and traditions
of the computer world. Once he understands a program he will use it well most of the time.
Occasionally he will be careless and make mistakes. It is the programmer's responsibility to try to
protect the consumer from his own mistakes.

The current state of software human engineering in the personal computer industry is dismal. A
great many programs are being sold that contain very poor human engineering. The worst
offenders are written by amateur programmers, but even software written at some of the largest
firms shows occasional lapses in human engineering.

Human engineering is an art, not a science. It demands great technical skill but it also requires
insight and feel. As such it is a highly subjective field devoid of absolutes. This appendix is the
work of one hand, and so betrays the subjectivities of its author. A proper regard for the wide
variety of opinions on the subject would have inflated this appendix beyond all reasonable limits of
length. Furthermore, a complete presentation of all points of view would only confuse the reader
with its many assertions, qualifications, counterpoints, and contradictions. I therefore chose the
simpler task of presenting only my own point of view, giving weak lip service to the most serious
objections. The result is contradictory enough to satisfy even the most academic of readers.

THE COMPUTER AS SENTIENT BEING
An instructive way of viewing the problem of human engineering is to cast the programmer as
sorcerer, conjuring up an intelligent being, a homunculus, within the innards of the computer. This
creature lacks physical embodiment, but possesses intellectual traits, specifically, the ability to
process and organize information. The user of the program enters into a relationship with this
homunculus. The two sentient beings think differently; the human's thought patterns are
associative, integrated, and diffuse, while the program's thought processes are direct, analytical,
and specific. These differences are complementary and productive because the homunculus can
do well what the human cannot. Unfortunately, these differences also create a communications
barrier between the human and the homunculus. They have so much to say to each other because
they are so different, but because they are different they cannot communicate well. The central
problem in good programming must therefore be to provide for better communications between
the user and the homunculus. Sad to say, many programmers expend the greater part of their
efforts on expanding and improving the processing power of their programs. This only produces a
more intelligent being with no eyes to see and no mouth to speak.

The current crop of personal computers have attained throughputs which make them capable of
sustaining programs intelligent enough to meet many of the average consumer's needs. The
primary limiting factor is no longer clock speed or resident memory; the primary limiting factor is
the thin pipeline connecting our now-intelligent homunculus with his human user. Each can
process information rapidly and efficiently; only the narrow pipeline between them slows down the
interaction.
COMMUNICATION BETWEEN HUMAN AND MACHINE
How can we widen the pipeline between the two thinkers? We must focus on the language with
which they communicate. Like any language, a man-machine language is restricted by the physical
means of expression available to the speakers. Because the computer and the human are
physically different, their modes of expression are physically different. This forces us to create a
language which is not bidirectional (as human languages are). Instead, a man- machine language
will have two channels, an input channel and an output channel. Just as we study human language
by first studying the sounds that the human vocal tract can generate, we begin by examining the
physical components of the man-machine interface.

OUTPUT (FROM COMPUTER TO HUMAN)

There are two primary output channels from the computer to the user. The first is the television
screen; the second is the television speaker. Fortunately, these are flexible devices which permit a
broad range of expression. The main body of this book describes the features available from the



128 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

computer's point of view. For the purposes of this appendix, it is more useful to discuss these
devices in terms of the human point of view. Of the two devices (screen and speaker) the display
screen is easily the more expressive and powerful device. The human eye is a more finely
developed information gathering device than the human ear. In electrical engineering terms, it has
more bandwidth than the ear. The eye can process three major forms of visual information:
shapes, color, and animation.

Shapes

Shapes are an ideal means for presenting information to the human. The human retina is
especially adept at recognizing shapes. The most direct use of shapes is for direct depiction of
objects. If you want the program to tell the user about something, draw a picture of it. A picture is
direct, obvious, and immediate.

The second use of shapes is for symbols. Some concepts in the human lexicon defy direct
depiction. Concepts like love, infinity, and direction cannot be shown with pictures. They must
instead be conveyed with symbols, such as a heart, a horizontal figure 8, or an arrow. These are a
few of the many symbols that we all recognize and use. Sometimes you can create an ad hoc
symbol for limited use in your program. Most people can pick up such an ad hoc symbol quite
readily. Symbols are a compact way to express an idea but they should not be used in place of
pictures unless compactness is essential. A symbol is an indirect expression; a picture is a direct
expression. The picture conveys the idea more forcefully.

The third and most common use of shapes is for text. A letter is a symbol; we put letters together
to form words. The language we thereby produce is extremely rich in its expressive power. Truly is
it said, "If you can't say it, you don't know it." This expressive power is gained at a price: extreme
indirection. The word that expresses an idea has no sensory or emotional connection with the idea.
The human is forced to carry out extensive mental gymnastics to decipher the word. Of course, we
do it so often that we have become quite fluent at translating strings of letters into ideas. We do
not notice the effort. The important point is that the indirection detracts from the immediacy and
forcefulness of the communication.

There is a school of thought that maintains that text is superior to graphics for communications
purposes. The gist of the argument is that text encourages freer use of the reader's rich
imagination. The argument does not satisfy me, for if the reader must use his imagination, he is
supplying information that is not inherent in the communication itself. An equal exercise of
imagination with graphics would provide even greater results. A more compelling argument for text
is that its indirection allows it to pack a considerable amount of information into a small space. The
space constraints on any real communication make text's greater compactness valuable.
Nevertheless, this does not make text superior to graphics; it makes text more economical.
Graphics requires more space, time, memory, or money, but it also communicates better than text.
To some extent, the choice between graphics and text is a matter of taste, and the taste of the
buying public is beyond question. Compare the popularity of television with that of radio, or movies
with books. Graphics beats text easily.

Color

Color is another vehicle for conveying information. It is less powerful than shape, and so normally
plays a secondary role to shape in visual presentations. Its most frequent use is to differentiate
between otherwise indistinguishable shapes. It also plays an important role in providing cues to the
user. Good color can salvage an otherwise ambiguous shape. For example, a tree represented as
a character must fit inside an 8x8 pixel grid. The grid is too small to draw a recognizable tree;
however, by coloring the tree green, the Image becomes much easier to recognize. Color is also
useful for attracting attention or signalling important material. Hot colors attract attention. Color
also provides aesthetic enhancement. Colored images are more pleasing to look at than black and
white images.

Animation

I use the term "animation" here to designate any visual change. Animation includes changing
colors, changing shapes, moving foreground objects, or moving the background. Animation's



129Appendix B. Human engineering

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

primary value is for showing dynamic processes. Indeed, graphic animation is the only way to
successfully present highly active events. The value of animation is most forcefully demonstrated
by a game like STAR RAIDERS. Can you imagine what the game would be like without animation?
For that matter, can you imagine what it would be like in pure text? The value of animation extends
far beyond games. Animation allows the designer to clearly show dynamic, changing events.
Animation is one of the major advantages that computers have over paper as an information
technology. Finally, animation is very powerful in sensory terms. The human eye is organized to
respond strongly to changes in the visual field. Animation can attract the eye's attention and
increase the user's involvement in the program.

Sound

Graphics images must be looked at to have effect. Sound can reach the user even when the user
is not paying direct attention to the sound. Sound therefore has great value as an annunciator or
warning cue. A wide variety of beeps, tones, and grunts can be used to signal feedback to the
user. Correct actions can be answered with a pleasant bell tone. Incorrect actions can be
answered with a raspberry. Warning conditions can be noted with a honk.

Sound has a second use: providing realistic sound effects. Quality sound effects can greatly add to
the impact of a program because the sound provides a second channel of information flow that is
effective even when the user is visually occupied.

Sound is ill-suited for conveying straight factual information; most people do not have the aural
acuity to distinguish fine tone differences. Sound is much more effective for conveying emotional
states or responses. Most people have a large array of associations of sounds with emotional
states. A descending sequence of notes implies deteriorating circumstances. An explosion sound
denotes destruction. A fanfare announces an important arrival. Certain note sequences from
widely recognized popular songs are immediately associated with particular feelings. For example,
in ENERGY CZAR, a funeral dirge tells the user that his energy mismanagement had ruined
America's energy situation, and a fragment of "Happy Days Are Here Again" indicates success.

INPUT DEVICES (FROM HUMAN TO COMPUTER)

There are three input devices most commonly used with the ATARI Home Computer. These are
the keyboard, joystick, and paddles.

Keyboard

The keyboard is easily the most powerful input device available to the designer. It has over 50
direct keystrokes immediately available. Use of the CONTROL and SHIFT keys more than doubles
the number of distinguishable entries the user can make. The CAPS/LOWR and ATARI keys
extend the expressive range of the keyboard even further. Thus, with a single keystroke the user
can-designate one of 125 commands. A pair of keystrokes can address more than 15,000
selections. Obviously, this device is very expressive; it can easily handle the communications
needs of any program. For this reason the keyboard is the input device of choice among
programmers.

While the strengths of the keyboard are undeniable, its weaknesses are seldom recognized. Its
first weakness is that not many people know how to use it well. Programmers use keyboards
heavily in their daily work; consequently, they are fast typists. The average consumer is not so
comfortable with a keyboard. He can easily press the wrong key. The very existence of all those
keys and the knowledge that one must press the correct key is itself intimidating to most people.

A second weakness of the keyboard is its indirection. It is very hard to attach direct meaning to a
keyboard. A keyboard has no obvious emotional or sensory significance. The new user has great
difficulty linking to it. All work with the keyboard is symbolic, using buttons which are marked with
symbols which are assigned meaning by the circumstances. The indirection of it all can be most
confusing to the beginner. Keyboards also suffer from their natural association with text displays; I
have already discussed the weaknesses of text as a medium for information transfer.

Another property of the keyboard that the designer must keep in mind is its digital nature. The



130 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

keyboard is digital both in selection and in time. This provides some protection against errors.
Because keystroke reading over time is not continous but digital, the keyboard is not well-suited to
real-time applications. Since humans are real-time creatures, this is a weakness. The designer
must realize that use of the keyboard will nudge him away from real-time interaction with his target
user.

Paddles

Paddles are the only truly analog input devices readily available for the system. As such they suffer
from the standard problem all analog input devices share: the requirement that the user make
precise settings to get a result. Their angular resolution is poor, and thermal effects produce some
jitter in even an untouched paddle's output.

Their primary value is twofold. First, they are well-suited for choosing values of a one-dimensional
variable. People can immediately pick up the idea that the paddle sweeps through all values, and
pressing the trigger makes the selection known. Second, the user can sweep from one end of the
spectrum to the other with a twist of the dial. This makes the entire spectrum of values immediately
accessible to the user.

An important factor in the use of paddles is the creation of a closed input/output loop. In most input
processes, it is desirable to echo inputs to the screen so that the user can verify the input he has
entered. This echoing process creates a closed input/output loop. Information travels from the user
to the input device to the computer to the screen to the user. Because the paddle has no absolute
positions, echoing is essential.

Any set of inputs that can be meaningfully placed along a linear sequence can be addressed with a
paddle. For example, menus can be addressed with a paddle. The sequence is from the top of the
menu to the bottom. it is quite possible (but entirely unreasonable) to substitute a paddle for a
keyboard. The paddle sweeps through the letters of the alphabet, with the current letter being
addressed shown on the screen. Pressing the paddle trigger selects the letter. While the scheme
would not produce any typing speed records, it is useful for children and the idea could be applied
to other problems.

Joysticks

Joysticks are the simplest input devices available for the computer. They are very sturdy and so
can be used in harsh environments. They contain only five switches. For this reason their
expressive power is frequently underestimated. However, joysticks are surprisingly useful input
devices. When used with a cursor, a joystick can address any point on the screen, making a
selection with the red button. With proper screen layout, the joystick can thus provide a wide
variety of control functions. I have used a joystick to control a nuclear reactor (SCRAM) and run a
wargame (EASTERN FRONT 1941).

The key to the proper use of the joystick is the realization that the critical variable is not the
selection of a switch, but the duration of time for which the switch is pressed. By controlling how
long the switch is pressed, the user determines how far the cursor moves. This normally requires a
constant velocity cursor. A constant velocity cursor introduces a difficult trade-off. If the cursor
moves too fast, the user will have difficulty positioning it on the item of choice. If the cursor moves
too slowly, the user will become impatient waiting for it to traverse long screen distances. One
solution to this problem is the accelerating cursor. If the cursor starts moving slowly and
accelerates, the user can have both fine positioning and high speed.

The real value of the joystick is its high tactility. The joystick involves the user in his inputs in a
direct and sensory way. The tactility of the keyboard is not emotionally significant. A joystick makes
sense --- push up to go up, down to go down. If the cursor reflects this on the screen, the entire
input process makes much more sense to the user.

Joysticks have their limitations. Although it is possible to press the joystick in a diagonal direction
and get a correct reading of the direction, the directions are not distinct enough to allow diagonal
entries as separate commands. Just as some words (e.g., "library," "February") are hard to
enunciate clearly, so too are diagonal orders hard to enter distinctly. Thus, diagonal values should



131Appendix B. Human engineering

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

be avoided unless they are used in the pure geometrical sense: up on the joystick means up, right
means right, and diagonally means diagonally.

SUMMARY OF COMMUNICATIONS ELEMENTS

We have discussed a number of features and devices which, taken together, constitute the
elements of a language for interaction between the computer and the user. They are:

CONSTRUCTING A LANGUAGE
How do we assemble all of these elements into an effective language? To do so, we must first
determine the major traits we expect of a good language:

          o Completeness
          o Directness
          o Closure
          o Completeness

The language must completely express all of the ideas that need to be communicated between the
computer and the user. It need not express ideas internal to either thinker's thought processes. For
example, the language used in STAR RAIDERS must express all concepts related to the control of
the vessel and the combat situation. It need not express the player's anxiety or the flight path
intentions of the Zylons. These concepts, while very germane to the entire game function, need not
be communicated between user and computer.

Completeness is an obvious function of any language, one that all programmers recognize
intuitively. Problems with completeness most often arise when the programmer must add functions
to the program, functions which cannot be supported by the language the programmer has
created. This can be quite exasperating, for in many cases the additional functions are easily
implemented in the program itself. The limiting factor is always the difficulty of adding new
expressions to the I/O language.

Directness

Any new language is hard to learn. No user has time to waste in learning an unnecessarily florid
language. The language a programmer creates for a program must be direct and to the point. It
must rely as much as possible on communications conventions that the user already knows. It
must be emotionally direct and obvious. For example, a CONTROL-X keystroke is obscure. What
does it mean? Perhaps it means that something should be destroyed; X implies elimination or
negation. Perhaps it implies that something should be examined, expunged, exhumed, or
something similar. if none of these possibilities are indeed the case, then the command is
unacceptably indirect. Keyboards are notorious for creating this kind of problem.

Closure

Closure is the aspect of communications design that causes the greatest problems. The concept is
best explained with an analogy. The user is at point A and wishes to use the program to get to
point B. A poorly human-engineered program is like a tightrope stretched between points A and B.
The user who knows exactly what to do and performs perfectly will succeed. More likely, he or she
will slip and fall. Some programs try to help by providing a manual or internal warnings that tell the
user what to do and what not to do. These are analogous to signs along the tightrope advising "BE



132 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

CAREFUL" and "DON'T FALL." I have seen several programs that place signs underneath the
tightrope, so that the user can at least see why he failed as he plummets. A somewhat better class
of programs provide masks against illegal entries. These are equivalent to guardrails alongside the
tightrope. These are much nicer, but they must be very well constructed to ensure that the user
does not thwart them. Some programs have nasty messages that bark at the errant user, warning
against making certain entries. These are analogous to scowling monitors in the school halls, and
are useful only for making an adult feel like a child. The ideal program is like a tunnel bored
through solid rock. There is but one path, the path leading to success. The user has no options but
to succeed.

The essence of closure is the narrowing of options, the elimination of possibilities, the placement
of rock solid walls around the user. Good design is not an accumulative process of piling lots of
features onto a basic architecture; good design requires the programmer to strip away minor
features, petty options, and general trivia.

This thesis clashes with the values of many programmers. Programmers crave complete freedom
to exercise power over the computer. Their most common complaint against a program is that it
somehow restricts their options. Thus, deliberate advocacy of closure is met with shocked
incredulity. Why would anyone be so foolish as to restrict the power of this wonderful tool?

The answer lies in the difference between the consumer and the programmer. The programmer
devotes his life to the computer; the consumer is a casual acquaintance at best. The programmer
uses the computer so heavily that it is cost-effective to take the time to learn to use a more
powerful tool. The consumer does not have the time to lavish on the machine. He wants to get to
point B as quickly as possible. He does not care for the fine points that occupy a programmer's life.
Bells and whistles cherished by programmers are only trivia to him. You as a programmer may not
share the consumer's values, but if you want to maintain your livelihood you had better cater to
them.

Closure is obtained by creating inputs and outputs that do not admit illegal values. This is
extremely difficult to do with a keyboard, for a keyboard always allows more entries than any real
program would need. This is an excellent argument against the use of the keyboard. A joystick is
much better, because you can do so little with it. Because it can do so little, it is easier to
conceptually exclude bad inputs. The ideal is achieved when all necessary options are expressible
with the joystick, and no further options will fit. In this case the user cannot make a bad entry
because it doesn't exist. More important, like Newspeak in Orwell's "1984", the user cannot even
conceive bad thoughts because no words (inputs) for them even exist.

Closure is much more than masking out bad inputs. Masking makes bad inputs conceivable and
expressible, but not functional. For example, a keyboard might be used with the "M" key disabled
because it is meaningless. The user can still see the key, he can imagine pressing it, and he can
wonder what would happen if he did press it --- all wasted effort. The user can waste even more
time by pressing it and wondering why nothing happened. The waste is compounded by the
programmer imagining the user doing all these wasteful things and putting in code to stop the
symptoms without eliminating the disease. By contrast, a properly closed input structure uses an
input device which can express only the entries necessary to run the program, and nothing more.
The user can't waste time messing with something that isn't there.

The advantages that accrue when closure is properly applied are manifold. Code is tighter and
runs faster because there need be no input error checking; such errors are obsolete in the new
program. The user requires less time to learn the program and has fewer problems with it.

The primary problem with closure is the design effort that must be expended to achieve good
closure. The entire relationship between the user and the program must be carefully analysed to
determine the minimum vocabulary necessary for the two to communicate. Numerous schemes of
communication must be examined and discarded before the true minimum scheme is found. In the
process, many bells and whistles that the programmer wanted to add will have to be eliminated. If
the programmer objectively looks beyond his own values, he will often conclude that the bells and
whistles are more clutter than chrome.

CONCLUSIONS



133Appendix B. Human engineering

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The design of the language of communication between the user and the program will be the most
difficult part of the design process in consumer software. The designer must carefully weigh the
capabilities of the machine and the needs of the user. He must precisely define the information
that must flow between the two sentient beings. He must then design his language to maximize the
clarity (not the quantity) of information flowing to the user while minimizing the effort the user must
expend to communicate with the computer. His language must utilize the machine's features and
devices effectively while maintaining its own completeness, directness, and closure.
SOME COMMON PROBLEMS IN HUMAN ENGINEERING
Having discussed the problems of human engineering in theoretical terms, we now turn to discuss
specific application problems in human engineering. The list of problems is not exhaustive; it
merely covers some of the problems common to almost all programs.

DELAY TIMES

Many programs require extensive computations. Indeed, almost all programs execute at some
time computations that take more than a few seconds to perform. What does the user experience
while these computations are executed? Too many programs simply stop the dialogue with the
user for the duration of the computation. The user is left with an inactive screen and no sign of life
from the computer. The computer does not respond to the user's inputs. If human engineering is
created by the language of communication between the computer and the user, then this complete
absence of communication can only be regarded as a total lack of human engineering. Leaving the
user in the lurch like this is absolutely unforgivable.

Separate Processes

The best way to deal with the problem of reconciling computations with attentiveness is to separate
the input process from the computational process. The user should be able to make inputs while
the computations are proceeding. This is technically achievable; by using vertical blank interrupts
the programmer can multitask input processing with mainline processing. The technique is used in
EASTERN FRONT 1941. The real problem with the technique is that many problems are
intrinsically sequential in nature. It is essential that the user input a value or choice before the
computation can proceed to the next step. This makes it difficult to separate input processing from
the mainline processing. However it is possible with clever design to perform anticipatory
calculations that will determine Intermediate values so that as soon as the critical data is entered,
the result might be more quickly obtained. Application of such techniques can surely reduce the
delay times that the user experiences.

Speed up the Program

Another means of dealing with this problem is to speed up the program itself. Critical code can
often be rewritten to decrease execution time. Proper nesting of loops (the loop with more
iterations should be inside the loop with fewer iterations) can reduce execution time. Careful
attention to the details of execution can yield further time reductions. Major gains can be made by
converting BASIC to assembly language. Assembly is from 10 to 1000 times faster than BASIC.
Assembly's advantage is greatest for memory move routines and graphics and least for floating
point calculations. By masking out vertical blank interrupts, more 6502 execution time can be freed
for mainline processing. Other gains can be accomplished by reducing the DMA overhead ANTIC
imposes. This can be done by going to a simple graphics mode (BASIC mode 3 is best).
Shortening the display list is another way to reduce DMA costs. Turning off ANTIC altogether is a
drastic route which only creates the additional problem of presenting the user with a blank screen.

Entertain the User

The third way to deal with delay times is to occupy the user during the computation. A countdown
is one such method. The user sees a countdown on the screen. When the countdown reaches
zero, the program is back in business. Another way is to draw random graphics on the screen. The
delay period should always start with a courteous message advising the user of the delay. It should
also be terminated with a bell or other annunciator. You should not expect the user to keep his
eyes on the screen for an arbitrary period of time. Entertaining the user during delays is a poor way
to deal with delays that shouldn't have been there in the first place, but it's better than abandoning



134 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

the user.

DEALING WITH BAD USER INPUTS

The most serious problem with present consumer software is the inadequate way that bad user
inputs are handled. Good designs preclude this problem by providing input languages that do not
make any bad entries available. As I pointed out earlier, this is most easily accomplished with a
joystick. However, there are applications (primarily text-intensive ones) that require a keyboard.
Furthermore, even joysticks occasionally introduce problems with user input. How are such bad
inputs to be dealt with when they cannot be expunged? Several suggestions follow. It is imperative
that any protection system be applied uniformly throughout the entire program. Once the user
encounters protection, he will expect it in all cases. The lack of such protection creates a gap
through which the user, thinking himself secure, will surely plunge.

Flag the Error and Suggest Solution

The most desirable approach in this unpleasant situation is to flag the user's error on the screen in
plain language and suggest a correct entry. Three things must be included in the computer's
response. First, the user's entry must be echoed back so he knows what he did that caused the
problem. Second, the offending component of the entry must be clearly marked and explained so
that the user knows why it is wrong. Third, an alternate legal entry must be suggested so that the
user does not become frustrated by the feeling that he has encountered a brick wall. For example,
an appropriate response to a bad keystroke entry might read thusly: "You pressed CONTROL-A,
which is an autopsy request. I cannot perform autopsies on living people. I suggest you kill the
subject first."

This method is obviously very expensive in terms of program size and programming time. That is
the price one pays for bad design. There are less expensive and less effective methods.

Masking out Bad Keys

One common solution to keyboard input problems is to mask out all bad entries. If the user
presses a bad key, nothing happens. No keyboard click is generated and no character appears on
the screen. The program only hears what it wants to hear. This solution is secure in that it prevents
program crashes, but it does not protect the user from confusion. The user would only press a key
if he felt that it would do something for him. Masking out the key cannot correct the user's
mistaken impression. It can only lead him to the conclusion that something is seriously wrong with
his computer. We don't want to do this to our users.

A variant on this scheme is to add a nasty buzzer or raspberry to chastise the user for his
foolishness. Indeed, some amateurish programs go so far as to heap textual abuse on the user.
Such techniques are highly questionable. There may indeed be cases requiring dangerous
keystroke entries which are guarded by fierce and nasty messages; such cases are quite rare.
Corrective messages should always conform to high standards of civility.

Error Messages

An even cheaper solution is to simply post an error message on the screen. The user is told only
that he did something wrong. In many cases, the error message is cryptic and does not help the
user in the least. ATARI BASIC is an extreme example of this. Error messages are provided by
number only. This can be justified only when the program must operate under very tight memory
constraints.

In most cases, the designer chooses to sacrifice human engineering features such as meaningful
error messages for some additional technical power. As pointed out in the beginning of this
appendix, we are reaching the stage in which additional technical power is no longer a limiting
factor to consumers, but human engineering is a limiting factor. Thus, the trade-off is less
justifiable.

Protection/Power Trade-Offs



135Appendix B. Human engineering

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

One objection to many human engineering features is that they slow down the user's interaction
with the computer. Programmers tire of Incessant "ARE YOU SURE?" requests and similar
restrictions. One solution to this problem is to provide variable protection/power ratios. For
example, a program can default to a highly protected state on initialization. All entries are carefully
checked and echoed to the user for confirmation. The user has an option to shed protection and
work in high-speed mode. This option is not obvious from the screen --- it is only described in the
documentation. Thus, the intensive user can work at a fast pace and the casual user can have
adequate protection.
MENUS AND SELECTION TECHNIQUES
Menus are standard devices for making the user aware of the options available. They are
especially useful for beginning users. Command-oriented schemes preferred by programmers
confuse beginners who cannot afford the time investment to learn the lexicon of commands used
by a command-oriented program. We will discuss several common problems associated with the
use of menus.

Menu Size

How many entries should be on a menu? The obvious upper limit is dictated by the size of the
screen, but this limit is too large, for a BASIC mode 0 screen could hold up to 48 entries (24 lines
with two choices per line). My guess is that seven entries is the desired upper limit on menu size.
This allows plenty of screen space to separate the entries, provide a menu title, and some sort of
prompt.

Multiple Menus

Frequently a program will require several menus to fully cover all of the options it offers. It is very
important that multiple menus be organized in a clear manner. The user can easily get lost
wandering around through such menu mazes. One way is to have a main menu that is prominently
marked as such, and provide each secondary menu with an option to return to the main menu.
Another way is to nest menus in a hierarchical structure. When using such methods, the
programmer must provide color and sound cues to help the user ascertain his position in the menu
structure. Each menu or menu level should have a distinctive note or color assigned to it. The note
frequency should be associated with the position in the hierarchy.

Selection Methods

Once the user has seen his options, how does he make his choice known to the computer? The
most common way is to label each entry on the menu with a letter or number; the user makes his
selection by pressing the corresponding key on the keyboard. This is a clumsy solution involving
unnecessary indirection. There are a number of better methods. Most of them use the same basic
scheme: a movable pointer addresses an option, and a trigger selects it. One scheme highlights
the option being addressed in inverse video. The SELECT button changes the pointer to address
the next menu selection, with full wraparound from the end of the menu to the beginning. The
START button engages a menu option. Another program automatically rotated the pointer through
the menu options; the user need only push a button at the correct moment when his desired option
was being addressed (not an impressive method). Paddles and joysticks are very well suited for
menu selection. Either one can be used to sweep the pointer through the menu selections, with the
red trigger button making the selection. My pet scheme for menu selection uses a cursor on a
large scrolling menu. The user moves the cursor with a joystick. Signposts can direct her to
different regions of the menu. The user makes a selection by placing the cursor directly on top of
an option and pressing the trigger button.

MANUALS VERSUS ON-BOARD TEXT
A common problem with menus, error messages, prompts, and other messages is that such
material can easily consume a large amount of memory --- memory that could well be used for
other features. Such material could be placed in a reference document, but doing so would detract
from the quality of the program's human engineering. The designer must decide how much
material should go into the program and how much should be relegated to the manual. With
disk-based programs it is possible to store some of the material on the diskette; this lessens the
harshness of the trade-off. When the problem is approached only from the human engineering
point of view, it is easily answered: all material should be included In the program, or at least on a



136 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

diskette. Economic and technical considerations argue against this. It is my personal view that
each technology should be used for the things it does best. While the computer can handle static
text, its forte is dynamic information processing. Paper and ink handle static information more
cheaply and often more clearly than a computer. I therefore prefer to put static information into a
manual and let the program refer the user to the manual. I still include critical information within the
program; my dividing line bends with local needs.
MEASURES OF SUCCESS
How can a designer determine the success of his human engineering? There are several
indicators that provide valuable feedback. The first is the minimum length of the manual. If you
exclude background material and isolate only the material in the manual that is absolutely
necessary to describe how to use the program, then the length of this material is a good measure
of your human engineering. The more material, the worse you've done. A well-designed program
should require very little explanation. This should not be construed as an argument against proper
documentation. Documentation should always describe the program in more detail than is
absolutely necessary. A long, lavish manual is good; a program that demands such a manual is
not.

Another measure is the amount of time that a first-time user expends to learn to use the program
satisfactorily. Good programs can be used in a matter of minutes.

A third measure is the amount of thinking a user must do to use the program. A well-designed
program should require no cognitive effort to use. This does not mean that the user does not think
at all while using such a program. Rather, he thinks about the content of the program rather than
the mechanics of the program. He should concentrate on what he is doing, not how he does it.

The well-engineered program eliminates mental distance between the user and the computer. The
two thinking beings achieve a mental syntony, an intellectual communion. 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Appendix C.
The Atari
Cassette

Chapter

XIII



138 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

13 Appendix C. The Atari Cassette

This discussion of the ATARI 410 Program Recorder includes the following topics:

    * How the cassette works. Information on the hardware and software used to operate the
cassette.
    * Cassette applications. How to mix audio and digital information to produce a user-oriented
program.

HOW THE CASSETTE WORKS

RECORD STRUCTURE

Byte Definition

The OS writes files in fixed-length blocks at 600 baud (physical bits/ second). Asynchronous serial
transmission is used to read and write data between the ATARI 400/800 Computers and the
ATARI Program Recorder. POKEY recognizes each data byte in this order: 1 start bit (space), 8
data bits (0=space, 1=mark), then one stop bit (mark). A byte is sent/received least significant bit
first.

The frequency used to represent a mark is 5327 Hz. For a space, the frequency is 3995 Hz. The
data byte format is as follows:

Record Definition

Records are 132 bytes long. A record is broken down in the following way: 2 marker characters for
speed measurement, a control byte, 128 data bytes, and the checksum byte. The record format is
shown below:



139Appendix C. The Atari Cassette

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

1st and 2nd MARKER

Each marker character is a 55 (hex). Including start and stop bits, each marker is 10 bits long.
Ideally, there should be no blank tape between the markers and the subsequent data.

Speed Measurement:

The purpose of the marker characters is to adjust the baud rate.

The input baud rate is assumed to be a nominal 600 baud. This is adjusted, however, by the SIO
routine to account for drive motor variations, stretched tape, etc. Once the true receive baud rate is
calculated, the hardware is adjusted accordingly. Input baud rates ranging from 318 to 1407 baud
can theoretically be handled using this technique.

The OS checks the tape speed in the following manner: The software looks at the POKEY
Serial-In bit continuously. Looking for a start (0 bit) which signifies the beginning of a record. When
it finds one, the OS stores the current frame counter by saving the ANTIC VCOUNT (vertical
screen counter). Continuing to look directly at the Serial-In bit, the OS counts the 20 bits (end of
the 2 markers), then uses VCOUNT and the frame counter to determine the elapsed time. The
baud rate to use is derived from the result. This is done for each record.

Control Byte

The control byte contains one of three values:

          o $FC indicates the record is a full data record (128 bytes).
          o $FA indicates the record is a partially full data record; fewer than 128 bytes were supplied
by the user. This case may occur only in the record prior to the end-of-file. The actual number of
data bytes, 1 to 127, is stored in the last data byte prior to the checksum; i.e., the 128th data byte.
          o $FE indicates the record is an end-of-file record and is followed by 128 zero bytes.



140 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Checksum

The checksum is generated and checked by the SIO routine, but is not contained in the cassette
handler's I/O buffer CASBUF [03FD]

The checksum is a single byte sum of all the other bytes in the record, including the two markers.
The checksum is computed with endaround carry. As each byte is added into the sum, the carry bit
is also added in.

TIMING

Inter-Record Gap

As mentioned earlier, each record consists of 132 data bytes including the checksum byte. In order
to distinguish one record from another, the cassette handler adds a Pre-Record Write Tone
(PRWT) and Post- Record Gap (PRG). PRWT and PRG are both pure mark tone. The
InterRecord Gap (IRG) between any two records thus consists of the PRG of the first record
followed by the PRWT of the second record. The layout of the records and gaps is as follows:

PRWT MARKER DATA PRG PRWT MARKER DATA PRG
Record 1 Record 2

Normal IRG Mode and Short IRG Mode

The length of PRWT and PRG are dependent upon the Write Open mode. There are two types of
IRG modes: Normal IRG mode and Short IRG mode.

When a file is opened, the most significant bit of AUX2 specifies the mode. On subsequent output
or input, the cassette handler executes the READ/WRITE in either mode based on the MSB of the
AUX2 byte:

AUX2 7 6 5 4 3 2 1 0
C

            c = 1 indicates that the cassette is to be read/written in Short IRG mode (continuous
mode).
            c = 0 indicates Normal IRG mode. 

Normal IRG Mode

This mode is used for a READ interleaved with processing; i.e., the tape always comes to a stop
after each record is read. If the computer "STOPS" the tape and gets its processing done fast
enough, the next READ may occur so quickly that the cassette deck may see only a slight dip in
the control line.

Short IRG Mode

In this mode the tape is not stopped between records, either when being written or during
readback.



141Appendix C. The Atari Cassette

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

On readback, the program must issue a READ for each record before it passes the read head.
The only common use of this mode so far is storage of BASIC programs in internal (tokenized)
form where, on readback, BASIC has nothing more to do with the data than put it in RAM. The
special BASIC commands "CSAVE" and "CLOAD" specify this mode.

There can be a potential problem with this. The software that writes the tape must allow long
enough gaps, so the beginning of records are not missed on readback.

Timing Structure

The timings for each of the inter-record gaps are as follows:

NORMAL IRG PRWT 3 seconds of mark tone.
SHORT IRG PRWT 0.25 second of mark tone.
NORMAL IRG PRG Up to 1 second of unknown tones.
SHORT IRG PRG From 0 to N seconds of unknown tones, where N

is dependent upon user program timing.

Each record is written with the following timing: once the motor starts and the PRWT is written, the
duration of the tone depends on the above format. The record follows, then the PRG is written.
The motor is then stopped for Normal mode, but continues writing mark for Short IRG mode.

Note that for the Normal IRG mode, the tape will contain a section of unknown data because of
stopping and restarting the motor. (Up to 1 second of travel is possible, depending on the cassette
machine.) This unknown data may be garbage data left previously on the tape.

Noisy I/O Feature

The Noisy I/O feature is useful for determining the success of reading the tape, particularly with
CLOAD. Marks and spaces use different sound frequencies and you quickly learn the good and
bad sounds the OS makes.

FILE STRUCTURE

A file consists of the following three elements:

          o A 20-second leader of the mark tone
          o Any number of data records
          o End-of-File

When the file is opened (output), the OS starts by writing a mark leader of 20 seconds, the OS
then returns to the caller, but leaves the tape running and writing marks.

The WRITE/READ timeout counter is set for about 35 seconds as the OS returns. If the timeout
occurs before the first record is written, the tape will stop, leaving a gap between the open leader
and the first record leader.

TAPE STRUCTURE

There are two sides to each tape. Each side has two tracks, one for audio and the other one for
digital recording. This way the tape can be recorded in both directions. Following is a flat view of
the tape:



142 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Tapes are recorded in 1/4 track stereo format at 1 7/8 inches per second (IPS). Note that the
ATARI 800 computer utilizes a tape deck that has a stereo head configuration (not a single or
mono type).

CASSETTE BOOT

The Cassette Boot program can be booted from the cassette at power-up time as part of the
system initialization. System initialization performs functions such as zeroing all of the hardware
registers, clearing RAM, setting flags and so on.

After all the resident handlers are brought in, if the [START] key is pressed, the Cassette Boot
request flag CKEY [004A] is set. If the Cassette Boot request flag is set, then a Cassette Boot
operation is attempted.

The following requirements must be met in order to boot from the cassette:

         1. The operator must press the [START] key as power is applied to the system.

         2. A cassette tape with a proper boot format file must be installed in the cassette drive, and
the PLAY button on the recorder must be pressed.

         3. The cassette file must have been created in Short IRG mode.

         4. When the audio prompt occurs, the operator must press a key on the keyboard.

If all of these conditions are met, the OS will READ the boot file from the cassette and then
transfer control to the software that was read in. The Cassette Boot process is given in more detail
below.

         1. READ the first cassette record to the cassette buffer.

         2. Extract information from the first 6 bytes. The first 6 bytes of a Cassette Boot file are
formatted as shown below:



143Appendix C. The Atari Cassette

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            1ST BYTE is not used by the Cassette Boot process.

            2ND BYTE contains the number of 128 byte cassette records to be read as part of the boot
process (including the record containing this information). This number may range from 1 to 255,
with 0 meaning 256.

            3RD and 4TH BYTES contain the address (LO,HI) at which to start loading the first byte of
the file.

            5TH and 6TH BYTES contain the address (LO,HI) to which control is transferred after the
boot process is complete. Pressing the [S/RESET] key will also transfer control to this address
assuming that the boot process is complete.

            When step 2 is complete, the Cassette Boot program will have:
                o Saved number of records to boot
                o Saved the load address
                o Saved the initialization address in CASINI [02,03]

         3. Move the record just read to the load address specified.

         4. READ the remaining records directly to the load area.

         5. JSR to the load address +6 where a multistage boot process may continue. The carry bit
will indicate the success of the operation (carry set = error, carry reset = success) on return.

         6. JSR indirectly through CASINI for initialization of the application. The application should
put its starting address into DOSVEC [0A,0B] during initialization, and then return.



144 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

         7. JMP indirectly through DOSVEC to transfer control to the application.

Pressing the [S/RESET] key after the application is fully booted will cause steps 6 and 7 to repeat.

CASSETTE APPLICATIONS
HOW TO CONFIGURE THE CASSETTE SYSTEM

Most serial bus devices have two identical connectors: one is a serial bus input and the other a
serial bus extender. Using these connectors, peripherals may be "daisychained" simply be cabling
them together in a sequential fashion like the following diagram:

            Figure C-1 Daisychained Peripheral Equipment 

However, the cassette does not conform to the protocol of the other peripherals that use the serial
bus. The cassette must be the last device on the serial bus because it does not have a serial bus
extender connector as the other peripherals do. The lack of a bus extender assures that there is
never more than one cassette drive connected to the system. The system cannot sense the
absence or presence of the cassette drive, so it may be connected and disconnected at will.

Whenever there is a need to open a cassette file for reading or writing, use the following
instructions:

Input (Data From 410 to 800) When the cassette is opened for input, a single audible tone is
generated using the keyboard speaker. If the cassette is ready (power on, serial bus cable
connected, tape cued to start of file), the user must depress the PLAY button on the cassette and
any ATARI 800 keyboard key (except [BREAK]) to initiate tape reading.

OUTPUT (DATA FROM 800 to 410) When the cassette is opened for output, two separate audible
tones are generated using the keyboard speaker. If the cassette is ready (as previously described),
the user must simultaneously press the PLAY and RECORD buttons on the cassette, and then
press any keyboard key (except [BREAK]) to initiate writing the tape.

SAVING AND LOADING DIGITAL PROGRAMS

Concept

The following technique saves the digital data directly from the computer through its I/O port of
either the ATARI 410 Program Recorder or the Atari Lab Machine which uses 1/4 inch tape
recorded at 7 1/2 inches per second.

FOR BASIC:
Format: CSAVE
100 CSAVE
This command is usually used in direct mode to save a RAM-resident program onto cassette
tape. CSAVE writes the tokenized version of the program to the 410.

Format: CLOAD
100 CLOAD
This command can be used in either direct or deferred mode to read programs from cassette
tape into RAM for execution. 



145Appendix C. The Atari Cassette

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

FOR ASSEMBLY LANGUAGE:
Source Program

Format: LIST#C:[,XX,YY]
This command is used to write assembly source code. The items in the optional brackets
[,XX,YY] mean to transfer only lines XX to YY to cassette. If line numbers are not provided,
the whole program is listed to cassette.

Format: ENTER#C:
This command reads source code from the cassette.

Object Program
Format: SAVE#C:
The contents of a block of memory, locations XXXX to YYYY, is saved onto cassette.

Format: LOAD#C:
This command will load memory with the material that was previously saved. The range of
memory locations that are filled will be the same as those given in the original SAVE
command. 

SAVING DIGITAL PROGRAMS WITH AUDIO AS BACKGROUND

Concept

This recording technique does not allow any program control over the audio. The audio plays
purely as background to help time pass during the monotonous loading process.

Step 1: Follow the digital writing instructions indicated in 2.2 for BASIC and assembly programs;
except, this time ATARI standard cassette tape (1 7/8 inches per second) is not used. Because it
is hard later for an individual to record audio onto the program recorder, we have to use the ATARI
recording lab machine, which uses 7 1/2 inches per second master tape. The lab machine is a
much more sophisticated recording machine able to record data onto a specified track.

On the lab machine, the recording mode is switched to ON for the right track, so digital is saved
onto the right track of the 7 1/2 inch tape.
Step 2: Use Step 1 for audio recording, but first rewind the tape to the beginning of the program
then switch the recording mode to ON for left track. This way the audio is recorded onto the left
track of the 7 1/2 inch tape.
DIGITAL PROGRAMS, AUDIO, SYNC MARK, AND SCREEN MANAGEMENT

Sync Mark Concept

There is no efficient way for the program to detect an audio segment when the cassette is playing.
To solve the synchronization problem, Sync Mark is used to carry the signal to inform the program
that an audio segment has been played (an audio segment can be either a piece of music or an
instruction, depending on the application).

More precisely, since audio data has no record structure, Sync Mark recorded on the digital track
is more or less like End-of-Record Mark for audio. For example, once the program senses the
Sync Mark, the program can decide what to do next, like stop the cassette motor for lengthy
processing or continue to play the next audio segment.

Step 1: The programmer figures out an audio script for FROG. The script is like this:

(MUSIC) TODAY I AM GOING TO TELL YOU A FAIRY-TALE NAMED "THE PRINCESS AND
THE FROG." IT IS A SWEET STORY SO DON'T GO AWAY. /

(MUSIC) BEFORE I START MY STORY, I WOULD LIKE TO KNOW WHO I AM TALKING
TO. WHAT IS YOUR NAME? TYPE YOUR NAME AND PRESS CARRIAGE RETURN.
(PAUSE)



146 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

(MUSIC) NOW, LET'S START THE STORY. ONCE UPON A TIME, THERE WAS THIS
BEAUTIFUL PRINCESS LIVING IN A CASTLE AND HER NAME WAS YYYY. /

(MUSIC) ON A CLEAR AND BEAUTIFUL DAY, THE PRINCESS WAS WALKING ALONG
THE .... /

REMARK:
- "/" means the program is checking for a sync mark. It is best if the speaker pauses about 1/2
second here before continuing to the next segment of the audio script.
- "PAUSE" is to indicate that the speaker pauses about 1 second here to allow time for the
stopping and starting of the cassette motor. Each audio segment should be at least 10 to 30
seconds long, because too many closely spaced Sync Marks can confuse the computer.

Step 2: It is suggested that before coding begins, the programmer draft a general plan for the
program indicating the relationship between screen (CPU) and audio.

Example: Figure C-2 illustrates how a programmer should create a cassette containing a
program that control over an audio track. The example is called FROG:

Step 3: The programmer can start coding the program called FROG, and it will look something like
this:

            10 REM PROGRAM "FROG" TO DEMONSTRATE SYNCHRONIZATION
            20 REM OF AUDIO WITH DIGITAL FOR THE CASSETTE SYSTEM
            30 REM
            40 DIM IN$(20)
            50 POKE 54018,52:REM TURN ON MOTOR
            60 GRAPHICS 1
            70 PRINT #6;"THE PRINCESS AND THE FROG":PRINT #6; .... :REM SET UP THE SCREEN
FOR EVENT 2.
            80 GOSUB 1000:REM CHECK SYNC MARK, MAKE SURE THE INTRODUCTION IS SAID.
            100 POSITION X,Y:PRINT #6;"YOUR NAME?":REM FOR EVENT 4
            105 GOSUB 1000:REM EVENT 5
            110 POKE 54018,60:REM STOP MOTOR FOR USER INPUT
            120 INPUT IN$:REM WAIT FOR THE USER'S NAME
            130 POKE 54018,52
            135 PRINT #6,CHR$(125):REM CLEAR THE SCREEN
            140 POSITION X,Y:PRINT #6;IN$:PRINT #6; .... :REM DISPLAY SCREEN FOR EVENT 10
            150 GOSUB 1000:REM MAKE SURE SPEECH FOR EVENT 10 IS FINISHED
            160 PRINT #6; .... :REM READY FOR EVENT 12



147Appendix C. The Atari Cassette

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

ROUTINE TO CHECK SYNC MARK: On the tape, non-sync is represented by "MARK" and Sync
Mark is represented by "SPACE." (Space is a "0" frequency; it is a lower pitch sound than a Mark
which is a "1" frequency. As mentioned before, Mark frequency is 5327 Hz, Space is 3995 Hz).
The Check Sync Mark routine continuously watches for a "SPACE" from the serial port. The
routine looks like this:

1000 IF INT(PEEK(53775)/32+0.5)=INT(PEEK(53775)/32) THEN RETURN: REM CHECK THE 5TH BIT
OF EACH INCOMING BYTE. IF IT IS "0" THEN THE SYNC SPACE IS FOUND.
1010 GOTO 1000 

ROUTINE TO CONTROL THE MOTOR: The program can turn the cassette motor on and off
by poking location 54018 with the data given below:

            ON: POKE 54018,52
            OFF: POKE 54018,60 

Step 4: After the audio script has been roughly written, the programmer should estimate the time



148 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

and the tape length required for the designed audio script (including pauses) and program. If the
tape length required is too long for one cassette, then either the script or the program will have to
be modified to fit into one cassette.

Step 5: Save the program to a master tape, for example "MASTER 1."

Step 6: With the audio script the voice is taped with pauses on another master tape, "MASTER 2."

Step 7: After "MASTER 1" and "MASTER 2" are produced, these two master tapes are merged to
produce another master tape called "MASTER 3." "MASTER 3" has the program recorded first,
and the audio spliced on the end. Three recording lab machines are needed for this procedure.
Make two copies of "MASTER 3."

Step 8: Load the Sync Mark program into the Atari 800 Computer. The purpose of this program is
to write continuous Sync Mark ("0" frequency) onto the digital track. The Sync Mark informs the
program that an audio segment has been played. Whenever there is a pause indicated on the
audio script, a Sync Mark is needed at that place. The finished tape with audio and sync would be
as shown in Figure C-3.

Figure C-3

The Sync Mark program looks like this:

            10 REM PUSH "START" CONSOL KEY TO
            20 REM ADD THE SYNC MARK ONTO THE TAPE
            30 REM
            40 REM
            50 IO=53760 : CONSOLE=53279 : CASS=54018
            100 FOR I=0 TO 8
            110 READ J : POKE I0+I,J
            120 NEXT I
            125 REM THE FOR LOOP SETS THE AUDIO FREQUENCY & CHANNEL
            130 DATA 5,160,7,160,5,160,7,160,0
            140 REM
            150 REM I/O IS SETUP; NOW START THE CASSETTE
            160 POKE CASS, 52
            200 POKE CONSOLE,8
            210 IF PEEK(CONSOLE)=7 THEN 230:REM CONSOLE=7 MEANS WRITE MARK,
            220 POKE 10+15,11: GOTO 200: REM CONSOLER KEYS NOT PRESSED
            230 POKE 10+15,128+11: GOTO 200: REM IF CONSOLE=7 WRITE "SPACE"

Step 9: Mount both MASTER 3 tapes in two independent recording machines and rewind both
tapes to the splice of program and audio. Configure one recording machine to one ATARI 800
Computer with Sync Mark program loaded. This recording machine is prepared for recording Sync
Mark on the digital track. The other recording machine will play back the audio recorded earlier.



149Appendix C. The Atari Cassette

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Step 10: Type RUN to start the Sync Mark program. At the same time start the recording
machines, one for recording, another one for playback. Listen to the audio and press the START
key whenever it is indicated by a pause in the audio script.

Step 11: Now the tape is done, with the program recorded followed by the audio and Sync
Mark recording. The finished tape is ready for mass production.

DISABLING THE BREAK KEY

We suggest that the programmer disable the BREAK key. This prevents the cassette program
from failing when the user accidently hits BREAK The OS will not recover a partial record, unless
the user can rewind to the lost record. The disable BREAK key routine looks like this:

            4000 X= PEEK(16): IF X 128 THEN 4020
            4010 POKE 16,X-128: POKE 53774,X-128
            4020 RETURN

The disable routine should be called whenever there is a change of graphics mode or any screen
open call.

MASS PRODUCTION

The programmer produces one or more MASTER TAPES according to the recording techniques
discussed in the forgoing paragraph. All Atari Masters are recorded on open-reel 1/4 track,
1/4-inch tape recorded at 7 1/2 inches per second. The MASTER TAPE is supplied to the
duplicator as a SOURCE MASTER.

The duplicator will take the SOURCE MASTER to make a WORK MASTER for the final cassette
mass production. The released product will be third generation from the original. The following is a
flow of the process:

INTERIM MASTER is recommended for the duplicator, because the WORK MASTER may be
destroyed or worn from excessive use. The SOURCE MASTER should be reserved only for
emergency need. The INTERIM MASTER is the backup copy for the WORK MASTER.

Mass Production Of Cassettes

At present, ATARI prefers the BIN LOOP method for mass production: The WORK MASTER is
copied to produce a LOOP MASTER. The LOOP MASTER may be on 1/4 inch, 1/2 inch, or any
tape width. The BIN LOOP is spliced into a CONTINUOUS LOOP with a short clear leader at the
splice. It is placed in a high-speed loop master machine which has one or more SLAVE machines.
The configuration is shown in Figure C-4



150 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

            Figure C-4 

The LOOP MASTER is repeatedly read. If the duplicator wants to produce 100 cassettes, for
example, the length of the tape on the SLAVE MACHINE is measured to the length of the program
multiplied by 100. There is a counter on the MASTER machine and it is set to 100.

As the LOOP MASTER is continuously read, the data (all four tracks) is copied onto the SLAVE
MACHINE tape.

As the clear section in the LOOP MASTER is sensed, the MASTER machine produces a
CUTTING TONE which is recorded on one or more tracks on the SLAVE MACHINE tapes. The
counter will then increase by one.

Each finished tape from the SLAVE MACHINE has 100 recorded programs with 100 CUTTING
TONES recorded. It is fed into an automatic loading machine which winds the tape into C-Zero
cassette shells. The configuration is like this:

            Figure C-5 

The cassette shells come with a small loop of leader which is bound to the cassette tape hubs.
The loader pulls the leader from the shell, cuts it, and splices the end of the slave machine tape to
the leader. The tape hub is used to wind the tape into the shell until the cutting tone is sensed. The
slave machine tape is then cut and spliced to the leader on the other hub.



151Appendix C. The Atari Cassette

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The cassette shell is removed either manually or mechanically from the loader and the tape in the
cassette shell is fully wound. The next cassette shell is loaded by the same process.

Quality Control Testing

Any time that a production run is created, samples must be taken from it and verified before it is
approved and released.
The QC testing is done normally by taking the first and the last cassette produced. Atari must
receive at least 10 samples from each mass production for each master released. 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Appendix D.
Television

Artifacts

Chapter

XIV



153Appendix D. Television Artifacts

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

14 Appendix D. Television Artifacts

This section discusses how to get multiple colors out of a single color graphics mode through the
use of television artifacts.

The ANTIC modes with which this can be accomplished are 2,3, and 15. ANTIC mode 2
corresponds to BASIC mode 0, ANTIC mode 15 is BASIC mode 8, and ANTIC mode 3 has no
corresponding BASIC mode. Each of these modes has a pixel resolution of one half color clock by
one scan line. They are generally considered to have one color and two luminances. With the use
of artifacts, pixels of four different colors can be displayed on the screen in each of these modes.

The term TV artifacts refers to a spot or "pixel" on the screen that displays a different color than
the one assigned to it.

A simple example of artifacts using the ATARI Computer is shown by entering the following lines:

            GRAPHICS 8
            COLOR 1
            POKE 710,0
            PLOT 60,60
            PLOT 63,60

These statements will plot two points on a black background; however each pixel will have a
different color.

To understand the cause of these differing colors one must first understand that all the display
information for the television display is contained in a modulated television signal.

The two major components of this signal are the luminance, or brightness, and the color, or tint.
The luminance information is the primary signal, containing not only the brightness data but also
the horizontal and vertical syncs and blanks. The color signal contains the color information and is
combined or modulated into the luminance waveform.

The luminance of a pixel on the screen is directly dependent on the amplitude of the luminance
signal at that point. The higher the amplitude of the signal, the brighter the pixel.

The color information, however, is a phase shifted signal. A phaseshifted signal is a constantly
oscillating waveform that has been delayed by some amount of time relative to a reference signal,
and this time delay is translated into the color.

The color signal oscillates at a constant rate of about 3.579 MHz, thus defining the highest
horizontal color resolution of a television set. This appears on the screen in the form of 160 visible
color cycles across one scan line. (There are actually 228 color cycles including the horizontal
blank and sync, and any overscan.)

The term "color clock" refers to one color cycle and is the term generally used throughout the
ATARI documentation to describe units of measurement across the screen. The graphics mode 7
is an example of one color clock resolution, where each color clock pixel can be a different color.
(There are microprocessor limitations though.)

Atari also offers a "high resolution" mode (GRAPHICS 8) that displays 320 pixels across one line.
This is generated by varying the amplitude of the luminance signal at about 7.16 MHz, which is
twice the color frequency.

Since the two signals are theoretically independent, one should be able to assign a "background"
color to be displayed and then merely vary the luminance on a pixel-by-pixel basis. This in fact is
the way mode 8 works, the "background" color coming from playfield register 2, and the
luminances coming from both playfield registers 1 and 2.

The problem is that in practice the color and luminance signals are not independent. They are part
of a modulated signal that must be demodulated to be used. Since the luminance is the primary
signal, whenever it changes, it also forces a change in the color phase shift. For one or more color



154 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

clocks of constant luminance this is no problem, since the color phase shift will be unchanged in
this area. However, if the luminance changes on a half color clock boundary it will force a fast color
shift at that point. Moreover, that color cannot be altered from the transmitting end of the signal
(the ATARI Computer).

Since the luminance can change on half color clock boundaries, this implies that two false color, or
artifact pixel types can be generated. This is basically true. However, these two pixels can be
combined to form two types of full color clock pixels. This is illustrated below:

            Figure D-1 

Note that each of these pixels requires one color clock of distance and therefore has a horizontal
resolution of 160.

The colors A through D are different for each television set, usually because the tint knob settings
vary. Thus they cannot be described as absolute colors, for example, red; but they are definitely
distinct from each other, and programs have been written that utilize these colors.

TELEVISION ARTIFACTS

To illustrate a simple application of artifacting, refer to the example below. This program draws
lines in each of the four artifact colors and then fills in areas using three of the colors. (Note that
displaying many pixels of either type C or D next to each other results in the same thing: a line or
constant luminance with background color.)

The POKE 87,7 command causes the OS to treat this mode as mode 7 and to use two-bit masks
when setting bits in the display memory. To generate color A, use COLOR 1, color B uses COLOR
2, and color C uses COLOR 3. Color D is generated by displaying COLOR 1 to the left of COLOR
2.

            10 GRAPHICS 8:POKE 87,7:POKE 710,0:POKE 709,14
            20 COLOR 1:PLOT 10,5:DRAWTO 10,70
            30 PLOT 40,5:DRAWTO 40,70
            40 COLOR 2:PLOT 20,5:DRAWTO 20,70
            50 PLOT 41,5:DRAWTO 41,70
            60 COLOR 3:PLOT 30,5:DRAWTO 30,70
            70 FOR X=l TO 3:COLOR X:POKE 765,X
            80 PLOT X*25+60,5:DRAWTO X*25+60,70
            90 DRAWTO X*25+40,70:POSITION X*25+40,5
            100 XIO 18,#6,12,0,"S:l"
            110 NEXT X 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Appendix E.
GTIA

Chapter

XV



156 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

15 Appendix E. GTIA

The GTIA is a new display chip that will someday replace CTIA. Actually it is nothing more than a
CTIA with a few more features. It simply provides three additional modes of interpretation of
information coming from the ANTIC chip. ANTIC does not require a new mode to talk to GTIA;
instead, it uses the high resolution mode $F. GTIA is completely upward compatible with the CTIA.
A brief summary of CTIA's features follows so that the differences between CTIA and GTIA can be
presented.

The CTIA is designed to display data on the television screen. It displays the playfield, players and
missiles, and detects any overlaps or collisions between objects on the screen. CTIA will interpret
the data supplied by ANTIC according to six text modes and eight graphics modes. In a static
display, it will use the data from ANTIC to display hue and luminance as defined in one of four
color registers. The GTIA expands this to use all nine color registers or 16 hues with one
luminance or 16 luminances of one hue in a static display.

The three graphics modes of GTIA are simply three new interpretations of ANTIC mode $F, a
hi-resolution mode. All three modes affect the playfield only. Players and missiles can still be
added to introduce new hues or luminances or to use the same colors and luminances in more
than one way. All displays of hues and luminances can still be changed on-the-fly with display list
interrupts. The GTIA uses four bits of data from ANTIC for each pixel, called the pixel data. Each
pixel is two color clocks wide and one scan line high. Thus, the pixels are roughly four times wider
than their height. The display has a resolution of 80 pixels across by 192 down. Each line then
requires 320 bits or 40 bytes of memory, the same number of bytes used in ANTIC mode $F.
Therefore for a program to run the GTIA modes it must have at least 8K of free RAM for the
display.

The GTIA modes are selected by the priority register, PRIOR. PRIOR is shadowed at location
$26F hex by the OS and is located at D01B hex in the chip. Bits D6 and D7 are the controlling bits.
When neither is set there are no GTIA modes and GTIA operates just like CTIA. When D7 is 0 and
D6 is 1, Mode 9 is specified which allows 16 different luminances of the same hue. Remember the
pixel data supplied by ANTIC is four bits wide which means 16 different values can be
represented. Players and missiles can be used in this mode to introduce additional hues. When D7
is 1 and D6 is 0, Mode 10 is specified. This mode gives nine colors in the display by using the four
playfield color registers plus the four player/missile color registers plus the one background color
register. When players are used in this mode, the four player/missile color registers are used for
them also. When D7 is 1 and D6 is 1, Mode 11 is specified. This mode gives 16 hues with the
same luminance again because 16 different values can be represented by four bits. Players and
missiles can be used in this mode to introduce different luminances.

            Figure E-1 Bit Pattern in PRIOR selects GTIA 

Setting up the new GTIA modes is as simple as setting up the present modes used in CTIA. To



157Appendix E. GTIA

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

implement the modes from BASIC simply use the commands GRAPHICS 9, GRAPHICS 10, and
GRAPHICS 11 for Mode 9, Mode 10, and Mode 11 respectively. In Assembly Language selecting
one of these modes is identical to opening the screen for any of the other modes. If you are
building your own display list then PRIOR must be set to select the correct mode as in Figure E-1.

Mode 9 produces up to 16 different luminances of the same hue. ANTIC provides the pixel data
which selects one of 16 different luminances. The background color register provides the hue. In
BASIC this is done using the SETCOLOR command to set the hue value in the upper nybble of the
background color register, and to set the luminance value in the lower nybble to all zeroes. The
format of the command is

            SETCOLOR 4,hue value,0 

where 4 specifies the background color register, "hue value" sets the hue and can be anything
from 0 to 15, and 0 will set the luminance part of the register to zero. This has to be done because
the pixel data from ANTIC will then be logically OR'ed with the lower nybble of the background
color register to set the luminance that appears on the screen. The COLOR command is then
used to select luminances for drawing on the screen by using values from 0 to 15 as its parameter.
So a BASIC program will include at least the following statements to use Mode 9:

            GRAPHICS 9 to specify Mode 9
            SETCOLOR 4,12,0 to initialize the background color register to some hue, in
this case green.
            FOR I=0 TO 15
            COLOR I
            PLOT 4,I+10 some method where the COLOR command is used to vary
luminance.
            NEXT I  

In Assembly Language use the OS shadow for the background color register $2C8 to set the hue
in the upper four bits with hex values from $0 to $F. If CIO calls are used, store the pixel data into
the OS register ATACHR located at $2FB. This selects the luminance with hex values from $0 to
$F. If you are maintaining your own display data then the pixel data goes directly into the left or
right half of the display RAM byte.

            Figure E-2 Background Color Register OR'ed with pixel data to give final color. 

Mode 11 is similar to Mode 9 except that it provides 16 different hues all with the same luminance.
Again ANTIC will provide the pixel data to select one of 16 different hues. In BASIC the
SETCOLOR command is used to set up the single luminance value in the lower nybble of the
background color register, and in the upper nybble, the hue value will be set to all zeroes. The
format of the command is

            SETCOLOR 4,0,luminance value 



158 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

where 4 specifies the background color register, 0 sets the upper nybble to zero and "luminance
value" sets the value of the luminance and can range from 0 to 15. As with the other graphics
modes (except Mode 9), the first bit of the luminance is not used, so effectively only even numbers
result in distinct luminances which gives eight different possible luminances in this mode. The
COLOR command is used in this mode to select the various hues by using values from 0 to 15 in
its parameter. The pixel data from ANTIC will be logically OR'ed with the upper nybble of the
background color register to set the hue part of the value that ultimately generates the color on the
screen. So a BASIC program using Mode 11 will include at least the following statements:

            GRAPHICS 11 to specify Mode 11
            SETCOLOR 4,0,12 to initialize the background color register to some
luminance, in this case very bright
            FOR I=0 TO 15
            COLOR I
            PLOT 4,I+10 some method where the COLOR command is used to vary the hue
            NEXT I  

In Assembly Language use the OS shadow for the background color register $2C8 to set the
luminance in the lower four bits with hex values from $0 to $F. If CIO calls are used, store the pixel
data into ATACHR located at $2FB. This selects the hue with hex values from $0 to $F. If you are
maintaining your own display data then the pixel data goes directly into the left or right half of the
display RAM byte.

            Figure E-3 Background Color Register OR'ed with pixel data to give final color. 

Mode 10 will allow all nine color registers to be used in the playfield at one time. Each color
register to be used must be set to some combination of hue and luminance. The pixel data from
ANTIC is used in this mode to select one of the color registers for display. In BASIC the
SETCOLOR command can be used as described in the BASIC Reference Manual to set the colors
in the background and the four playfield registers. These can also be set by using the POKE
instruction to addresses 708-712 where the four playfield registers and the background register are
located. The POKE instruction must be used to set the four player/missile color registers at
locations 704-707. The COLOR command is used to select the color register desired. The only
meaningful values for its argument are 0 to 8. A problem arises with this mode. ANTIC supplies
four bits of data per pixel, as it does with Modes 9 and 11. This allows for the selection of 16 color
registers. However, only nine color registers exist in the hardware. An illegal data value between 9
and 15 will select one of the lower value color registers. A BASIC program using mode 10 will
include:

         1. a GRAPHICS 10 command to specify Mode 10;

         2. a set of POKE instructions to put hues and luminances into the color registers, OR a
combination of SETCOLOR commands and POKE instructions to do that;



159Appendix E. GTIA

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

         3. a COLOR command to select the desired color register.

In Assembly Language, store the pixel data in ATACHR ($2FB) or directly into the display RAM
byte as in Modes 9 and 11. In this mode the pixel data can range from 0 to 8 and selects one of
the nine color registers.

COLOR STATEMENT
VALUE

COLOR REGISTER
USED

OS SHADOW

0
1
2
3
4
5
6
7
8

D012
D013
D014
D015
D016
D017
D018
D019
D01A

2CO
2C1
2C2
2C3
2C4
2C5
2C6
2C7
2C8

            Figure E-4 Color Register numbers and locations and COLOR command reference. 

An important question arises in conjunction with GTIA concerning compatibility. GTIA is fully
upward compatible with the CTIA and all software that runs on a CTIA system will run the same
way on a system with GTIA. This means you still have the full use of players and missiles, still
have collision and overlap detection and display list interrupts. The GTIA graphics modes are fully
supported by the OS and all graphics commands and utilities that run in the CTIA modes can be
used in GTIA modes.

More colors are available to display at one time on the screen. Sixteen color changes can occur on
one line totally independent of processor intervention. This is actually better than what could be
done with display list interrupts which could give at most only 12 color changes per line. Much finer
contour and depth can be represented using the shading available in Mode 9. This means three
dimensional graphics can be realistically displayed.

On the other hand, there are some disadvantages. GTIA modes are map modes, there can be no
text displayed in these modes. A custom display list must be used to switch to a mode that
supports character displays. The GTIA pixel is a long, skinny horizontal rectangle (4:1, width to
height) and does not represent curved lines well. Because each pixel uses four bits of information,
GTIA requires nearly 8K of free RAM to operate. Although it is upward compatible, it is NOT
downward compatible. Thus programs which use GTIA modes will NOT produce correct displays
on computers that have CTIA'S. They may well be recognizable but will not be as colorful. There is
no way currently for a program to determine whether or not a GTIA is present in a system. Finally,
color artifacts produced by a GTIA system will not be identical to the color artifacts produced on
the same television with a CTIA system. 



Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Glossary

Chapter

XVI



161Glossary

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

16 Glossary

$
This symbol in front of a number indicates that the number should be interpreted as hexadecimal.

ANTIC
This is a separate microprocessor, contained within the ATARI 400/800 Computers, which is
dedicated to the television display. ANTIC is user- programmable with an instruction set, a
program (the "display list"), and data (the "display memory").

ATTRACT MODE
This is a feature provided by the operating system which, after nine minutes without a key being
pressed, cycles the colors on the screen through random hues at lowered luminances. This
ensures that a computer left unattended for several hours doesn't burn a static image into the
television screen.

BACKGROUND
The area of the television screen display upon which player-missile graphics objects or playfield
objects and/or text are projected. Background has its own user-definable color.

BCD
Acronym for Binary Coded Decimal. A numbering system in which each number is broken into a
sequence of decimal digits. These decimal digits are then coded into binary, a task which requires
four bits per digit, and stored in the resultant form. In the ATARI Computer, two such digits are
stored in each 8-bit byte.

BORDER
In BASIC Mode 0, this is the area of the television screen display which is formed by the four
edges of the screen. The border takes background color.

BRKKEY
A flag set when the OS senses that the BREAK key is typed. BRKKEY'S normal value is $FF -- if it
changes, then the BREAK key has been pressed.

BYTE COUNT
This is the file pointer's position within a sector on diskette.

CASSETTE BOOT FILE
A standard or user-created file which boots from cassette at power-up or SYSTEM RESET.

CHARACTER GRAPHICS
The technique of redefining the individual characters of a character set to form graphics images
instead of text characters.

CHARACTER IMAGE
The unique 8 X 8 pixel grid which defines a particular character's shape.

CHARACTER MODE
This is a specific type of ANTIC display mode which displays screen display memory data bytes as
characters, using a character set. There are six ANTIC character modes, three of which are
accessible from BASIC.

CHARACTER NAME BYTE
A one-byte ANTIC display memory value which selects a unique character within the current
character set using the character's sequential position in that set.

CHARACTER SET INDIRECTION
The technique of specifying to ANTIC a particular character set to be used by placing that set's
beginning page address into CHBAS.

CHBAS



162 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

The OS shadow location which ANTIC uses to find the current character set which is to be used
for character display modes. CHBAS is at decimal address 756.

CHECKSUM
This is a single byte sum of all the bytes in a record (either disk I/O or cassette I/O). For cassette
I/O, this includes addition of the two marker characters, computed with end-around carry.

CIO
Acronym for Central I/O system routine. CIO routes I/O control data to the correct device handler
and then passes control to the handler. CIO is also the common entry point for most of the OS I/O
functions.

COARSE SCROLLING
The process of altering the display list LMS (Load Memory Scan) address bytes in order to
vertically or horizontally scroll the screen image, one byte at a time. This is accomplished by
adding 1 to or subtracting 1 from the LMS address bytes.

COLDSTART
Synonym for the power-up process which performs a series of system database initializations
when the computer power switch is turned on. After coldstart, the system surrenders control to the
user.

COLLISION
This occurs when a player or missile image coincides with another image. There are 60 possible
collisions and each one has a bit assigned to it that can be checked. These bits are mapped into
16 registers in CTIA (with only the lower 4 bits used).

COLOR
One of 128 values obtained from a hue-luminance combination which is stored in a color register.

COLOR CLOCK
The standard unit of horizontal distance on the television screen. There are 228 color clocks in a
horizontal scan line, but only 160 are displayed in a normal width playfield.

COLOR REGISTER
A hardware register (with corresponding OS shadow location) used to define the color for various
portions of the screen display. There are nine color registers available on the ATARI Home
Computer.

COLOR REGISTER INDIRECTION
The technique of specifying a particular color by pointing to its color register rather than directly
specifying it.

COLOR SIGNAL
This contains the color information which is combined with the primary signal to form the
modulating television signal. The color signal oscillates at 3.579 Mhz.

COLRSH
A zero-page location ($4F) set up and updated by the OS during vertical blank interrupts for
ATTRACT mode processing. When ATTRACT mode is in force, COLRSH is given a new random
value every 4 seconds.

COMMAND
In BASIC, this is the first executable token of a BASIC statement that tells BASIC to interpret the
tokens that follow in a particular way.

CONSTANT
In BASIC, this is a 6-byte BCD value preceded by a special token. This value remains unchanged
throughout the program execution.

CONTROL BYTE



163Glossary

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

In cassette I/O, this is part of every record. It contains one of three possible values.

CTIA
A television interface chip which is controlled primarily by ANTIC. CTIA converts ANTIC's digital
commands into a signal that is sent to the television.

CURRENT STATEMENT
In BASIC, this is the current token within a line of the Statement Table.

CYCLE STEALING
This occurs when ANTIC halts 6502 processing in order to perform DMA functions for memory
refresh and screen display purposes.

CYCLIC ANIMATION
The technique of repetitively flipping through colors, graphics images, or character graphics sets to
animate screen images.

DCB
Acronym for Device Control Block. The DCB is used by the I/O subsystem to communicate
between the device handier and SIO.

DEVICE HANDLERS
Routines present in OS ROM which are called through CIO (as long as the handler has an entry in
HATABS) to communicate with particular devices. Currently supported are the display editor, the
screen, the keyboard, the printer, and the cassette. More handlers can automatically boot in during
power-up.

DEVICE SPEC
A special HATABS code which specifies a particular I/O device.

DIAGONAL SCROLLING
This results from the combination of horizontal and vertical scrolling of the screen image.

DISPLAY LIST
ANTIC's "program" defined by the user or provided automatically (through a GRAPHICS
command) by BASIC. The display list specifies where the screen data may be found, what display
modes to use to interpret screen data, and what special display options (if any) should be
implemented.

DISPLAY LIST INTERRUPT
A special ANTIC display list instruction which interrupts the 6502 microprocessor during the
drawing of the screen image, allowing the 6502 to change the screen parameters.

DISPLAY MODE
Either a BASIC or ANTIC methodology for interpreting text or map data bytes in screen memory
and displaying them on the screen. ANTIC provides 15 display modes; BASIC, through the OS,
supports only 9 of these modes.

DLI VECTOR
This is a 2-byte vector (low byte, high byte) to the Display List Interrupt service routine. This vector
is set by the user and is located at [512,513] decimal.

DMA
Direct Memory Access. This occurs when ANTIC halts the 6502 and takes control of the system
buses to fetch an instruction or data byte from memory.

DMACTL
The hardware register whose bit settings control the use of DMA by the ANTIC chip. This affects,
among other things, player vertical resolution and player-missile graphics enabling.

DOS



164 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Acronym for Disk Operating System which is an extension of the OS that allows the user to access
disk drive mass storage as files.

DOUBLE-LINE RESOLUTION
A unit of vertical resolution for a player in player-missile graphics. Each player byte occupies two
horizontal scan lines on the screen, and each player table is 128 bytes long.

DRKMSK
A zero-page ($4E) location set up and updated by the OS during vertical blank interrupts for
ATTRACT mode process color register's value. This ensures a low luminance for ATTRACT
mode.

DUP
Acronym for Disk Utility Package. DUP is a set of utilities for disk drive usage, familiarly seen as
the DOS menu. DUP executes commands by calling FMS through CIO.

DYNAMIC DISPLAY LIST
This is an ANTIC display list which the 6502 changes during vertical blank periods, allowing for
even greater flexibility in the screen display.

EOL
In BASIC, "End-of-Line", a character with the value $9B.

FILE
In cassette I/O, this consists of a 20-second leader of the mark tone plus any number of data
bytes, and end-of-file. In diskette I/O, this consists of a number of sectors linked by pointers (125
data bytes per sector).

FILE POINTER
For diskette I/O, this is a value which indicates the current position in a file by specifying the Sector
Number and the Byte Count. DOS keeps a file pointer for every file currently open.

FINE SCROLLING
The process of horizontally or vertically scrolling a screen image in color clock or scan line
increments. The horizontal scrolling and vertical scrolling hardware registers must be used to fine
scroll.

FMS
File Manager System. FMS is a nonresident device handler which supports some special CIO
functions.

FONT
A collection of characters which constitutes a character set. These characters can be either text or
graphics images.

FOREGROUND
Equivalent to playfield, the area of the screen which directly overlays the background of the screen.
Foreground is formed by map displays and/or text.

FORMAT
A resident disk handler command that clears all the tracks on diskette.

FUNCTION
In BASIC, a token that when executed returns a value to the program.

GRAPHICS INDIRECTION
A special feature of the ATARI Computer which allows color register and character set generality
by using indirect pointers to color and character set values.

HATABS
The device handler entry point table which is used by CIO. HATABS is located at $031A.



165Glossary

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

HORIZONTAL BLANK
This is the period during which the electron beam (as it draws the screen image) turns off and
returns from the right edge of the screen to the left edge.

HORIZONTAL POSITION REGISTER
A special register which contains a user-definable value for the horizontal position of a player in
player-missile graphics. This value is measured in units of color clocks.

HORIZONTAL SCAN LINE
The fundamental unit of measurement of vertical distance on the screen. The scan line is formed
by a single trace of the electron beam across the screen.

HORIZONTAL SCROLL ENABLE BIT
This is bit D6 of the ANTIC display instruction which enables horizontal scrolling through the
HSCROL register.

HORIZONTAL SCROLLING
This is the process of sliding the screen window to the left or right over display memory in order to
display more information than could be seen with a static screen. Both coarse and fine horizontal
scrolling and available.

HSCROL
This is the horizontal fine scrolling register located at $D404, containing the number of color clocks
by which a line is to be horizontally scrolled.

HUE
The upper nybble value of a color register's color. There are 16 possible hues ($0 to $F) which in
combination with a luminance value constitute distinct colors. Examples of hues are black, red,
and gold.

IMMEDIATE MODE
In BASIC, the mode where the input line is not preceded by a line number. BASIC immediately
executes the line.

INPUT BAUD RATE
For cassette I/O, this is assumed to be a nominal 600 baud (physical bits per second). However,
this rate is adjusted by SIO to account for drive motor variations, stretched tape, etc.

INPUT LINE BUFFER
In BASIC, from $580 to $5FF.

INTER-RECORD GAP
For cassette I/O records, this consists of the Post-record Gap of a given record followed by the
Pre-record Write Tone of the next record.

I/O
Input/Output.

IOCB
Acronym for Input/Output Control Block. There are eight of these whose function is to
communicate between the user program and CIO.

IRQ
Maskable (can be enabled or disabled by the 6502) interrupts such as the Break Key IRQ.

IRQEN
The write-only register that contains the IRQ enable/disable bits. IRQEN is shadowed at POKMSK.

KERNEL
A primitive software/hardware technique which consists of a 6502 program loop which is precisely



166 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

timed to the display cycle of the television set. The kernel code monitors the VCOUNT register and
consults a table of screen changes catalogued as a function of VCOUNT values so that the 6502
can arbitrarily control all graphics values for the entire screen.

LINE
In BASIC, a line consists of one or more BASIC statements preceded either by a line number in
the range of 0 to 32767, or an immediate mode line with no line number.

LOMEM
In BASIC, this is the pointer ([80,81] decimal) to a buffer used to tokenize one line of code. The
buffer is 256 bytes long, residing at the end of the operating system's allocated RAM.

LSI
Acronym for Large Scale Integration. This refers to a technology for manufacturing silicon chips.
LSI chips are the largest and most powerful chips in mass production; they contain many
thousands of components.

LUMINANCE
The lower nybble of a color register's color. There are eight even- numbered values for luminance
($0 to $F, even values only) which in combination with hue values produce the 128 colors available
on the ATARI 400/800 Computer.

MAP MODE
This is a specific type of ANTIC display mode using simple colored screen pixels instead of
characters for the screen display. There are eight ANTIC map modes, with varying degrees of
resolution. Six of these are callable from BASIC.

MARK
For cassette I/O, this is a 5327-Hz frequency.

MARKER CHARACTER
For cassette I/O, this is a 55 (hex) value whose purpose is for adjusting the baud rate. Including
the start and stop bits, each marker character is 10 bits long.

MEMTOP
In BASIC, a pointer ([90,91] decimal) to the top of application RAM, the end of the user program.
Program expansion can occur from this point to the end of free RAM, which is defined by the start
of the display list. This MEMTOP is not the same as the OS variable called MEMTOP.

MISSILE
A one-dimensional image in RAM used in player-missile graphics which is 2 bits wide. There is a
maximum of four missiles, one for each player.

MODE LINE
A collection of horizontal scan lines for screen displays. Depending upon the BASIC or ANTIC
display mode in effect, a mode line will be composed of varying numbers of scan lines. By the
same token, depending upon the display mode, a screen image will be composed of varying
numbers of mode lines.

MONITOR
A program in ROM that handles both the system power-up and SYSTEM RESET sequences.

NARROW PLAYFIELD
A screen display width option equal to a width of 128 color clocks.

NMI
Non-Maskable Interrupt (i.e., cannot be disabled by the 6502). The Display List Interrupt and the
Vertical Blank Interrupt are both NMIs. These can be disabled with the ANTIC NMIEN register.

NMIEN
The Non-Maskable Interrupt Enable register which controls enabling of various NMI interrupts such



167Glossary

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

as the Display List Interrupt (DLI).

NORMAL IRG MODE
In cassette I/O, this is a mode where the tape always comes to a stop after each record is read. If
the computer stops the tape and gets its processing done fast enough, then the next read may
occur so quickly that the cassette deck may see only a slight dip in the control line.

NORMAL PLAYFIELD
A screen display width option equal to a width of 160 color clocks.

OPERATOR
In BASIC, any one of the 46 tokens that in some way move or modify the values that follow them.

OPERATOR STACK
In BASIC, a software stack where operators are placed when an arithmetic BASIC expression is
being evaluated.

OVERSCAN
The "spreading out" of a television image by the raster scan method of display so that the edges of
the picture are off the edge of the television tube. This guarantees no unsightly borders in the
television picture.

PIA
Acronym for Peripheral Interface Adaptor. This is an LSI chip which interfaces the 6502 with
external devices. The joystick pins of the four user ports are connected to a PIA inside the
computer.

PIXEL
The smallest screen graphics unit addressable in a particular display mode. It is a square whose
size depends on the display mode.

PLAYER
A one-dimensional RAM image used in player-missile graphics which can be 128 bytes
(double-line resolution) or 256 bytes (single-line resolution) long. The player appears as a vertical
band 8 pixels wide stretching from the top of the screen to the bottom. There is a maximum of four
independent players.

PLAYER COLOR
The color of a player in player-missile graphics. Each of the four independent players has its own
color stored in its associated color register.

PLAYER-MISSILE AREA
A RAM area that contains the images of the four players and four missiles of player- missile
graphics, as well as some extra RAM. The player-missile area must be on a 1K boundary for
single-line resolution players or a 2K boundary for double-line resolution players.

PLAYER-MISSILE GRAPHICS
Atari's solution for simplifying animation by creating an image (a player or missile) which is
one-dimensional in RAM but two- dimensional on the screen.

PLAYFIELD
The area of the screen which directly overlays the background of the screen. Map graphics and/or
text form this playfield.

PLAYFIELD ANIMATION
The technique of animating an object by moving its image bytes to new locations in screen
memory, and then erasing the bytes of the old image before displaying the new image.

PMBAS
A register that points to the beginning of the player-missile area.



168 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

POKEY
A digital I/O chip that handles the serial I/O bus, audio generation, keyboard scan-, and random
number generation. POKEY also digitizes the resistive paddle inputs and controls maskable
Interrupt (IRQ) requests.

POKEY TIMERS
These are hardware timers within POKEY. Unlike System Timers, which are maintained by the OS
software and are fixed, the POKEY chip timers are clocked by frequencies set by the user.

POST-RECORD GAP
A pure mark tone frequency used as a post-record delimiter in cassette I/O.

PRE-RECORD WRITE TONE
A pure mark tone frequency used as a pre-record delimiter in cassette I/O.

PRIMARY SIGNAL
This contains the luminance information -- brightness data, horizontal and vertical syncs and
blanks -- of the modulated television signal.

PRIORITY-CONTROL REGISTER
Also known as PRIOR, and shadowed at GPRIOR. This register specifies which playfield, player,
or background images have priority in the case of image overlaps during the screen display
process.

RAM VECTOR
Alterable system vector that contains 2-byte addresses to system routines, handler entry pointers,
or to initialization routines. RAM vectors are initialized at power-up and SYSTEM RESET.

RASTER SCAN
A television display system that uses an electron beam generated at the rear of the television tube.
The beam sweeps across the screen in a regular left-to-right, top-to-bottom fashion.

RECORD
For diskette I/O, a group of bytes delimited by EOLs ($9B). For cassette I/O, this is a group of 132
bytes which is composed of two marker characters for cassette speed measurement, a control
byte, 128 data bytes, and the checksum byte.

RESIDENT DISK HANDLER
The fundamental software in the OS ROM containing the absolutely essential disk handler
routines. This software performs five important low- level disk I/O functions such as FORMAT,
READ SECTOR, WRITE SECTOR, WRITE/VERIFY SECTOR, and STATUS.

ROM VECTOR
Unalterable system vector that contains JMP instructions to system routines. The ROM vector
allows a programmer to write software that uses the OS routines without running the risk of the
routines being made unworkable by new releases of the OS ROM.

RTCLOK
One of the system timers which is 3 bytes in length and is updated during immediate VBLANK.
RTCLOK can be used as a reference clock for an application program.

RUNSTK
In BASIC, a pointer ([8E,8F] decimal) to the Run Time Stack.

RUN TIME STACK
In BASIC, a software stack that contains GOSUB and FOR/NEXT return address entries.

SCREEN MEMORY
A RAM area used by the 6502 to store bytes of data that will be fetched (by DMA) by ANTIC to be
interpreted and eventually displayed as images on the screen.



169Glossary

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

SECTOR
On a diskette, this is a 128-byte physical area. The diskette contains 40 tracks with. 18 sectors per
track.

SECTOR NUMBER
A value from 1 to 719 that specifies the sector to which the file pointer is currently pointing.

SETVBV
A system routine that sets the system timers and sets user-definable interrupt vector addresses
without danger of crashes due to interrupts in mid-process.

SHADOWING
A process in which values are moved between hardware locations and RAM locations, thereby
allowing the program to monitor the contents of write-only hardware registers or check the inputs
form read-only hardware registers.

SHORT IRG MODE
In cassette I/O, this means the tape is not stopped between records. The BASIC commands
"CSAVE" and "CLOAD" both specify this mode.

SINGLE-LINE RESOLUTION
A unit of vertical resolution for a player in player-missile graphics. Each player byte occupies one
horizontal scan line on the screen, and each player table is 256 bytes long.

SIO
Serial I/O system routine which handles communication between the serial device handlers in the
computer and devices on the serial bus (cassette, printer, disk drive, and RS-232).

SIO INTERRUPTS
These are three IRQ interrupts used by SIO to send and receive serial bus communications to
serial bus devices. These three are VSERIR (Serial Input Ready), VSEROR (Serial Output
Needed), and VSEROC (Transmission Finished).

SOUND REGISTER
Audio-producing hardware in the ATARI Home Computer System which contains frequency,
volume, and distortion information, but not duration.

SPACE
For cassette I/O, this is a 3995-Hz frequency output to the cassette tape as a delimiter in
conjunction with mark tones.

STARP
In BASIC, the pointer ([8C,8D] decimal) to the String Array Area.

STATEMENT
In BASIC, this is a complete "sentence" of tokens that causes BASIC to perform some meaningful
task. In LIST form, statements are separated by colons.

STATEMENT TABLE
In BASIC, this is a block of data that includes all the lines of code that have been entered by the
user and tokenized by BASIC. This table also includes the immediate mode line.

STMCUR
In BASIC, the pointer ([8A,8B] decimal) to the current BASIC statement.

STMTAB
In BASIC, this is the pointer ([88,89] decimal) to the Statement Table.

STRING ARRAY AREA
In BASIC, this block contains all the string and array data.



170 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

SYNC MARK
This is a 3995-Hz space frequency used as a sort of "end-of-record" marker for audio tracks on
the cassette. In applications software it is useful for synchronizing the computer screen display
with cassette audio.

SYSTEM. DATABASE
This is an area that occupies RAM pages 0 through 4, containing many locations that store
information of importance to the operating system.

SYSTEM TIMER
A timer provided by the ATARI 400/800 Computers that runs at the frequency of the television
frame which for North American televisions (NTSC) is 59.923334 Hz. European (PAL) televisions
run at 50 Hz. There are six system timers, and they are clocked as part of the vertical blank
process.

TELEVISION ARTIFACT
A pixel on an NTSC screen, one color clock wide, that contains color not assigned by the
computer. This color is derived from internal oddities of color television displays. Artifacting is
possible in ANTIC modes 2,3, and 15 which correspond to BASIC modes 0, no mode, and 8.

TEXT WINDOW
On a screen display, this is a two-dimensional area set aside for character displays.

TOKEN
In BASIC, an 8-bit byte containing a particular execution code.

TOKENIZING
In BASIC, this is the process of getting a line of ATASCII character input and creating a series of
8-bit bytes which contain tokens, meaningful execution codes.

VARIABLE
In BASIC, a token that is an indirect pointer to an entries in variable tables that contain the variable
name and the variable value.

VARIABLE NAME TABLE
In BASIC, this is the table containing a list of all the variable names that have been entered in a
program.

VARIABLE VALUE TABLE
In BASIC, this table contains the numerical value of each variable.

VBREAK
This is the 6502 BRK instruction IRQ vector. Whenever a $00 opcode (the software break
instruction) is executed, this interrupt occurs. VBREAK normally points to an RTI instruction.

VCOUNT REGISTER
The ANTIC register which keeps track of which horizontal scan line ANTIC is displaying.

VDSLST
This is the Display List Interrupt NMI vector located at [$0200,$0201].

VERTICAL BLANK
The period during which the electron beam (as it draws the screen image) returns from the bottom
of the screen to the top. This period is about 1400 microseconds in duration.

VERTICAL BLANK INTERRUPT
A non-maskable interrupt which occurs every 60th of a second during the vertical blank time of the
television display. In responding to this interrupt, the OS performs various housekeeping functions
such as shadowing color registers.

VERTICAL SCROLL ENABLE BIT



171Glossary

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

This is bit D5 of the ANTIC display list instruction byte which enables vertical fine scrolling through
VSCROL ($D405), the vertical fine scroll register.

VERTICAL SCROLLING
The process of vertically "rolling" the display screen "window" over a larger amount of screen data
in display memory than can be displayed by a static screen window. Both coarse and fine vertical
scrolling are available on the ATARI 400/800 Computers.

VIMIRQ
This is the immediate IRQ vector. All IRQs vector through this location. VIMIRQ normally points to
the IRQ handier. This vector can be "stolen" to do user IRQ processing.

VINTER
This is the Peripheral Interrupt IRQ vector. The interrupt line is also available on the serial bus.
VINTER normally points to an RTI instruction.

VKEYBD
This is the keyboard IRQ vector which is activated by pressing any key except BREAK. This vector
normally points to the OS's own keyboard IRQ routine.

VNTD
In BASIC, this is the pointer ([84,85] decimal) to the Variable Name Table Dummy end. BASIC
uses this pointer to indicate the end of the name table. This pointer normally points to a dummy
zero byte when there are less than 128 variables. When 128 variables are present, this points to
the last byte of the last variable name.

VNTP
In BASIC, the pointer ([82,83] decimal) to the Variable Name Table.

VPRCED
This is the Peripheral Proceed IRQ vector. The proceed line is available to peripherals on the serial
bus. This IRQ is unused at the present and normally points to an RTI instruction.

VSCROL
This is the vertical fine scroll register located at $D405. Into VSCROL the user stuffs the number of
scan lines by which the screen line is to be vertically scrolled.

VSERIN
This is the POKEY serial Input Ready IRQ vector.

VSEROR
This is the POKEY serial Output Ready IRQ vector.

VTIMR1
This is the POKEY timer 1 IRQ vector.

VTIMR2
This is the POKEY timer 2 IRQ vector.

VTIMR4
This is the POKEY timer 4 IRQ vector.

VVBLKD
This is the Vertical Blank Deferred NMI interrupt vector located at [$0224,$0225].

VVBLKI
This is the Vertical Blank Immediate NMI interrupt vector located at [$0222,$0223].

VVTP
In BASIC, this is the pointer ([86,87] decimal) to the Variable Value Table.



172 De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

WARMSTART
Another name for SYSTEM RESET routine. The warmstart initializes most of the system vectors
but does not check RAM size.

WIDE PLAYFIELD
A screen display width option equal to a width of 192 color clocks.

WSYNC
Wait for Horizontal Sync of the electron beam which is drawing the screen image. The WSYNC
register, when written to in any way, pulls down the RDY line on the 6502 microprocessor, freezing
the 6502 until the electron beam drawing the screen image returns to the left edge of the screen.

ZERO-PAGE
In the ATARI Home Computer System, this is the stretch of memory which spans locations $0000
to $00FF.

ZIOCB
Zero-page I/O Control Block is used to communicate I/O control data between CIO and the device
handlers. 



Back Cover


	System Overview
	Antic and the display list
	Graphics indirection
	Player-Missile graphics
	Display list interrupts
	Scrolling
	Sound
	The Operating System
	The Disk Operating System
	Atari Basic
	Appendix A. Memory utilization
	Appendix B. Human engineering
	Appendix C. The Atari Cassette
	Appendix D. Television Artifacts
	Appendix E. GTIA
	Glossary

