TO
IFFIC'I'IVI

De Re Atari

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Preface

Introduction

by enter value here

This manual is about the ATARI Home Computer. It covers both the ATARI 400TM
and the ATARI 800TM Computers. These two computers are electrically identical,
differing only in mechanical features such as the keyboards and cartridge slots. The
purpose of this manual is to explain in detail how to use all the features of the
ATARI Computer. Because this is a complex and powerful machine, the
explanations are accordingly rather long. Furthermore, they demand some expert
Expertise on the part of the reader. This book is not intended for the beginning
programmer. The reader should be thoroughly familiar with the BASIC Reference
Manual, which is provided with the computer. Familiarity with assembly language is
also essential. A glossary in the back defines and explains some of the less
commonly encountered jargon. However, this glossary does not include terms that
every serious personal computer programmer should already know.

Written as a training manual for professional programmers who use the ATARI
Home Computer, this book may be modified for general use at some later date. It
does not supplant the technical reference manual (ATARI part number C016555),
which is a reference for programmers who already understand the system. This
book is intended to be a tutorial that explains ideas and possibilities rather than
defining registers and control codes.

The title, DE RE ATARI, is pronounced "Day Ray Atari". It is an obscure literary
reference. Some Latin manuscripts in Roman and medieval times were entitled "De
Re This" or "De Re That". Thus, "De Re Rustica" was a poem on farming and "De
Re Metallica" described metallurgy. Loosely translated, "De Re" means "All About".

Most of the word processing for the book was carried out with Atari computers. A
source file editor was used for text editing, and a modified version of FORMS
(available from the Atari Program Exchange) was used to format and print the text.
A letter-quality printer was used for output. Some sections were developed with a
conventional word processor.

The Software Development Support Group wrote this book. Chris Crawford wrote
Sections 1 through 6 and Appendices A and B. Lane Winner wrote Section 10 and
Appendix D with assistance from Jim Cox. Amy Chen wrote Appendix C. Jim
Dunion wrote Sections 8 and 9. Kathleen Pitta wrote Appendix E. Bob Fraser wrote
Section 7. Gus Makreas prepared the Glossary. The final result has many flaws, but
we are proud of it.

Content

Content

Chapter | System Overview

Chapter Il Antic and the display list
Chapter Il Graphics indirection

Chapter IV Player-Missile graphics

Chapter V Display list interrupts

Chapter VI Scrolling

Chapter VII Sound

Chapter VIl The Operating System

Chapter IX The Disk Operating System
Chapter X Atari Basic

Chapter XI Appendix A. Memory utilization
Chapter Xl Appendix B. Human engineering
Chapter XlllAppendix C. The Atari Cassette
Chapter XIVAppendix D. Television Artifacts
Chapter XV Appendix E. GTIA

Chapter XVIGlossary

Index

15
22
31
39
45
63
99
110
124
127
138
153
156
161

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Chapter

System
Overview

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

System Overview 3

1 System Overview

The ATARI Home Computer is a second-generation personal computer. First and foremost, it is a
consumer computer. The thrust of the design is to make the consumer comfortable with the
computer. This consumer orientation manifests itself in many ways. First, the machine is proofed
against consumer mistakes stakes by such things as polarized connectors that will not go in the
wrong way, a power interlock on the lid to the internal electronics, and a pair of plastic shields
protecting the SYSTEM RESET key. Second, the machine has a great deal of graphics power;
people respond to pictures much more readily than to text. Third, the machine has strong sound
capabilities. Again, people respond to direct sensory input better than to indirect textual messages.
Finally, the computer has joysticks and paddles for more direct tactile input than is possible with
keyboards. The point here is not that the computer has lots of features but rather that the features
are all part of a consistent design philosophy aimed directly at the consumer. The designer who
does not appreciate this fundamental fact will find himself working against the grain of the system.

The internal layout of the ATARI 400/800Tm Computer is very different from other systems. It of
course has a microprocessor (a 6502), RAM, ROM, and a (PIA). However, it also has three
special- purpose (LSI) chips known as ANTIC, CTIA, and POKEY. These chips were designed by
Atari engineers primarily to take much of the burden of housekeeping off of the 6502, thereby
freeing the 6502 to concentrate on computations. While they were at it, they designed a great deal
of power into these chips. Each of these chips is almost as big (in terms of silicon area) as a 6502,
so the three of them together provide a tremendous amount of power. Mastering the ATARI
400/800 Computers is primarily a matter of mastering these three chips.

ANTIC is a microprocessor dedicated to the television display. It is a true microprocessor; it has an
instruction set, a program (called the display list), and data. The display list and the display data
are written into RAM by the 6502. ANTIC retrieves this information from RAM using direct memory
access (DMA). It processes the higher level instructions in the display list and translates these
instructions into a real-time stream of simple instructions to CTIA.

CTIA is a television interface chip. ANTIC directly controls most of CTIA's operations, but the 6502
can be programmed to intercede and control some or all of CTIA's functions. CTIA converts the
digital commands from ANTIC (or the 6502) into the signal that goes to the television. CTIA also
adds some factors of its own, such as colour values, player-missile graphics, and col- lision
detection.

POKEY is a digital input/output (1/0) chip. It handles such disparate tasks as the serial /0 bus,
audio generation, keyboard scan, and random number generation. It also digitizes the resistive
paddle inputs and controls maskable interrupt (IRQ) requests from peripherals.

All four of these LSI chips function simultaneously. Careful separation of their functions in the
design phase has minimized conflicts between the chips. The only hardware level conflict between
any two chips in the system occurs when ANTIC needs to use the address and data buses to fetch
its display information. To do this, it halts the 6502 and takes control of the buses.

As with all 6502 systems, the I/O is memory-mapped. Figure 1-1 presents the coarse memory map
for the computer. Figure 1-2 shows the hardware arrangement.

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

De Re Atari

With no DOS With DOS 2.08
operating System RAM 0000 operating System RAM
1000
DOS5 2.08

2000
3000

Free 4000 Free

RAM RAM

Space 5000 Space
6000
7000
8000
9000
A000

BASIC or other BO0O BASIC or other
BK cartridge 8K cartridge
cooo
unallocated unallocated
DO00
hardware 110 hardware 110
EOQOD |
operating System F operating System
ROM 000 ROM

FFFF

Figure 1-1 Atari Memory Arrangement

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

System Overview 5

Light
Pan

Console Switches
Joystick Triggers

6502

ANTIC

Processor bus i i

Keyboard

Paddles
Keyboard
Controllars

Joystick

Paddle

Triggers

PCKEY Pla

it

9

OS
RAM

USER
RAM

Lo

K a

Y

-~

ﬁ] T l—-DQ’—

CTIAIGTIA by
{} Spsaker\
LEFT RIGHT

CART. CART.]
]
\/ z
o

0s
ROM

Sound

0
@25

ATARI 400/800

Figure 1-2 Atari Hardware Arrangement

Serial
bus

v
I d?ilvf:s I

L @J
I e |

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Chapter

Antic and the
display list

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Antic and the display list 7

2 Antic and the display list

TELEVISION DISPLAYS

To understand the graphics capabilities of the ATARI Home Computer, one must first understand
the rudiments of how a television set works. Television sets use what is called a raster scan
display system. An electron beam is generated at the rear of the television tube and shot toward
the television screen. Along the way, it passes between sets of horizontal and vertical coils which,
if energized, can deflect the beam. In this way the beam can be made to strike any point on the
screen. The electronics inside the television set cause the beam to sweep across the television
screen in a regular fashion. The beam's intensity can also be controlled. If you make the beam
more intense, the spot in the screen that it strikes will glow brightly; if you make it less intense, the
spot will glow dimly or not at all

The beam starts at the top-left corner of the screen and traces horizontally across the screen. As it
sweeps across the screen, its changes in intensity paint an image on the screen. When it reaches
the right edge of the screen, it is turned off and brought back to the left side of the screen. At the
same time it is moved down just a notch. It then turns back on and sweeps across the screen
agate. This process is repeated for a total of 262 sweeps across the screen. (There are actually
525 sweeps across the screen in an alternating system known as "interlace." We will ignore
interlace and act as if the television has only 262 lines.) These 262 lines fill the screen from top to
bottom. At the bottom of the screen (after the 262nd line is drawn), the electron beam is turned off
and returned to the upper left corner of the screen. Then it starts the cycle all over agate. This
entire cycle happens 60 times every second.

Now for some Jargon: a single trace of the beam across the screen is called a "horizontal scan
line." A horizontal scan line is the fundamental unit of measurement of vertical distance on the
screen. You state the height of an image by specifying the number of horizontal scan lines it
spans. The period during which the beam returns from the right edge to the left edge is called the
"horizontal blank." The period during which the beam returns to the top of the screen is called the
"vertical blank." The entire process of drawing a screen takes 16,684 microseconds. The vertical
blank period is about 1400 microseconds. The horizontal blank takes 14 microseconds. A single
horizontal line takes 64 microseconds.

Most television sets are designed with "overscan”; that means they spread the image out so the
picture edges are off the edge of the television tube. This guarantees that you have no unsightly
borders in your television picture. It is very bad for computers, though, because screen information
that is off the edge of the picture does you no good. For tints reason the picture that the computer
puts out must be somewhat smaller than the television can theoretically display. Therefore, only
192 horizontal scan lines are normally used by the ATARI display. Thus, the normal limit of
resolution of a television set used with this computer is 192 pixels vertically.

The standard unit of horizontal distance is the "color clock." You specify the width of an image by
stating how many color clocks wide it Is. There are 228 color clocks in a single horizontal scan line,
of which a maximum of 176 are actually visible. Thus, the ultimate limit for full-color horizontal
resolution with a standard color television is 176 pixels. It is possible with the ATARI Home
Computer System to go even finer and control individual half- clocks. This gives a horizontal
resolution ton of 352 pixels. However, use of tints feature will produce interesting color effects
known as color artifacts. Color artifacts can be a nuisance if they are not desired; they can be a
boon to the programmer who desires additional color and is not fazed by their restrictions.

COMPUTERS AND TELEVISIONS

The fundamental problem any microcomputer has In using a raster scan television for display
purposes is that the television display is a dynamic process; because of this, the television does
not remember the image. Consequently, the computer must remember the screen Image and
constantly send a signal to the television telling it what to display. This process of sending in format
ton to the television is a continuous process and it requires full-time attention For tints reason most
microcomputers have special hardware circuits that handle the television The basic arrangement
is the same on virtually all systems:

microprocessor-->screen RAM--->video hardware--->TV screen

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

De Re Atari

The microprocessor writes information to the screen RAM area that holds the screen data. The
video hardware is constantly dipping into this RAM area, gettting screen data that it converts into
television signals These signals go to the television which then displays the information. The
screen memory is mapped onto the screen in the same order that it follows in RAM. That is, the
first byte in the screen memory maps to the top-left corner of the screen, the second byte maps
one position to the right, then the third, the fourth, and so on to the last byte which is mapped to
the lower right corner of the screen.

The quality of the Image that gets to the screen depends on two factors: the quality of the video
hardware, and the quantity of screen RAM used for the display The simplest arrangement is that
used by TRS- 80 and PET. (TRS-80) is a trademark of Radio Shack Co; PET is a trademark of
Commodore Business Machines.) Both of these machines allocate a specific 1K of RAM as
screen memory. The video hardware circuits imply pull data out of tints area, Interpret it as
characters (using a character set in ROM), and put the resulting characters onto the screen. Each
byte represents one character, allowing a choice of 256 different characters in the character set.
With 1K of screen RAM, one thousand characters can be displayed on the screen. There isn't
much that can be done with tints arrangement. The Apple uses more advanced video hardware.
(Apple is a trademark of Apple Computers.) Three graphics modes are provided: text, lo-
resolutton graphics, and hi- resolution graphics. The text graphics mode operates in much the
same way that the PET and TRS-80 displays operate. In the low-resolution graphics mode, the
video hardware reaches into screen memory and interprets it differently. Instead of interpreting
each byte as a character, each byte is interpreted as a pair of color nibbles. The value of each
nibble specifies the color of a single pixel. In the high-resolution graphics mode each bit in screen
memory is mapped to a single pixel. If the bit is on, the pixel gets color in It; if the bit is off, the pixel
stays dark. The situation is complicated by a variety of design nuances in the Apple, but that is the
basic idea. The important idea is that the Apple has three display modes; three completely
different ways of interpreting the data in screen memory. The Apple video hardware is smart
enough to interpret a screen memory byte as either an 8-bit character (text mode), two 4-bit color
nybbles (lo-resolution mode), or 7 individual bits for a bit map hi-resolution mode).

ANTIC, A VIDEO MICROPROCESSOR

The ATARI 400/800 display list system represents a generalization of these systems. Where PET
and TRS-80 have one mode and Apple has three modes, the ATARI 400/800 has 14 modes. The
second important difference is that display modes can be mixed on the screen. That is, the user is
not restricted to a choice between a screen ful of text or a screenful of graphics. Any collection of
the 14 graphics. modes can be displayed on the screen. The third important difference is that the
screen RAM can be located anywhere in the address space of the computer and moved around
while the program is running, while the other machines use fixed-screen RAM areas.

All of this generality is made possible by a video microprocessor called ANTIC. Where the earlier
systems used rather simple video circuitry, Atari designed a full-scale microprocessor just to
handle the intricacies of the television display. ANTIC is a true microprocessor; it has an instruction
set, a program, and data. The program for ANTIC is called the display list. The display list specifies
three things: where the screen data may be found, what display modes to use to Interpret the
screen data, and what special display options (if any) should be implemented. When (using the
display list, it is important to shed the old view of a screen as a homogeneous image in a single
mode and see it instead as a stack of "mode lines." A mode line is a collection of horizontal scan
lines. It stretches horizontally all the way across the screen. A Graphics 2 mode line is 16
horizontal scan lines high, while a Graphics 7 mode line is only two scan lines high. Many graphics.
modes available from BASIC are homogeneous; an entire screen of a single mode is set up. Do
not limit your imagination to this pattern; with the display list you can create any sequence of mode
lines down the screen. The display list is a collection of code bytes that specify that sequence.

ANTIC'S instruction set is rather simple. There are four classes of instructions: map mode,
character mode, blank line and jump. Map mode instructions cause ANTIC to display a mode line
with simple colored pixels (no characters). Character mode instructions cause ANTIC to display a
mode line with characters in it. Blank line instructions cause ANTIC to display a number of
horizontal scan lines with solid background color. Jump instructions are analogous to a 6502 JMP
instruction; they reload ANTIC's program counter.

There are also four special options that can sometimes be specified by setting a designated bit in

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Antic and the display list 9

the ANTIC instruction. These options are: display list Interrupt (DLI), load memory scan (LMS),
vertical scroll, and horizontal scroll.

Map mode instructions cause ANTIC to display a mode line containing pixels with solid color in
them. The color displayed comes from a color register. The choice of color register is specified by
the value of the screen data. In four-color map modes (BASIC modes 3, 5, and 7, and ANTIC
modes 8, A, D, and E), a pair of bits is required to specify a color:

Value of Bit Pair Color Register Used

000 COLBAK
011 COLPFO
102 COLPF1
113 COLPF2

Since only two bits are needed to specify one pixel, 4 pixels are encoded in each screen data byte.
For example, a byte of screen data containing the value $1B would display 4 pixels; the first would
be the background, the second would be color register 0, the third would be color register 1, and
the fourth would be color register 2:

$1B = 00011011 =00 01 10 11

In two-color map modes (BASIC modes 4, 6, and 8, and ANTIC modes 9, B. C, and F) each bit
specifies one of two color registers. A bit value of 0 selects background color for the pixel and a bit
value of 1 selects color register 0 for the pixel. Eight pixels can be stored in one screen data byte.

There are eight different map display modes. They differ in the number of colors they display (2 vs
4), the vertical size one mode line occupies (1 scan line 2, 4, or 8), and the number of pixels that fit
horizontally into one mode line (40, 80, 160, or 320). Thus, some map modes give better
resolution; these will of course require more screen RAM. Figure 2-1 presents this information for

all modes.

ANTIC BASIC No. Scan Li nes Pi xel s Bytes Bytes/
Mode Mode Col ors Mode Line Mode Li ne Li ne Screen
2 0 2 8 40 40 960

3 none 2 10 40 40 760

4 none 4 8 40 40 960

5 none 4 16 40 40 480

6 1 5 8 20 20 480

7 2 5 16 20 20 240

8 3 4 8 40 10 240

9 4 2 4 80 10 480

A 5 4 4 80 20 960

B 6 2 2 160 20 1920
C none 2 1 160 20 3840
D 7 4 2 160 40 3840
E none 4 1 160 40 7680
F 8 2 1 320 40 7680

Figure 2-1 ANTIC Mode Line Requirements

Character mode instructions cause ANTIC to display a mode line with characters in it. Each byte in
screen RAM specifies one character. There are six character display modes. Character displays
are discussed in Section

Blank line instructions produce blank lines with solid background color. There are eight blank line
instructions they specify skipping one through eight blank lines

There are two jump instructions. The first (JMP) is a direct jump; it. reloads ANTIC's program
counter with a new address that follows the JMP instruction as an operand. Its only function is to
provide a solution to a tricky problem: ANTIC's program counter has only 10 bits of counter and six
bits of latch and so the display list cannot cross a 1K boundary. If the display list must cross a 1K
boundary then it must use a JMP instruction to hop over the boundary. Note that this means that
display lists are not fully relocatable.

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

10

De Re Atari

The second jump instruction (JVB) is more commonly used. It reloads the program counter with
the value in the operand and waits for the television to perform a vertical blank. This instruction is
normally used to terminate a display list by jumping back up to the top of the display list Jumping
up to the top of the display list turns it into an infinite loop; waiting for vertical blank ensures that the
infinite loop is synchronized to the display cycle of the television. Both IMP and JVB are 3-byte
instructions the first byte is the opcode, the second and third bytes are the address to jump to (low
then high).

The four special options mentioned previously will be discussed in Sections 5 and 6. The load
memory scan (LMS) option must have a preliminary explanation. This option is selected by setting
bit 6 of a map mode or a character mode instruction byte. When ANTIC encounters such an
instruction, it will load its memory scan counter with the following 2 bytes. This memory scan
counter tells ANTIC where the screen RAM is. It will begin fetching display data from this area. The
LMS instruction is a 3- byte instruction: 1 byte opcode followed by 2 bytes of operand. In simple
display lists the LMS instruction Is used only once, at the beginning of the display list. It may
sometimes be necessary to use a second LMS instruction. The need arises when the screen RAM
area crosses a 4K boundary. The memory scan counter has only 12 bits of counter and 4 bits of
latch; thus, the display data cannot cross a 4K boundary. In this case an LMS instruction must be
used to jump the memory scan counter over the boundary. Note that this means that display data
is not fully relocatable. LMS instructions have wider uses which will be discussed later.

BUILDING DISPLAY LISTS

Every display list should start off with three "blank 8 lines" instructions. This is to defeat vertical
overscan by bringing the beginning of the display 24 scan lines down. After this is done, the first
display line should be specified. Simultaneously, the LMS should be used to tell ANTIC where it will
find the screen RAM. Then follows the display list proper, which lists the display bytes for the mode
lines on the screen. The total number of horizontal scan lines produced by the display list should
always be 192 or less; ANTIC does not maintain the screen timing requirements of the television. If
you give ANTIC too many scan lines to display it will do so, but the television screen will probably
roll. Displaying fewer than 192 scan lines will cause no problems; indeed, it will decrease 6502
execution time by reducing the number of cycles stolen by ANTIC. The programmer must calculate
the sum of the horizontal scan lines produced by the display list and verify it. The display list
terminates with a JVB instruction. Here is a typical display list for a standard BASIC Graphics
mode 0 display (all values are in hexadecimal):

70 Blank 8 lines

70 Blank 8 lines

70 Blank 8 lines

42 display ANTIC mode 2 (BASIC mode0)
20 Also, screen memory starts at7C20

7C

02 Display Antic Mode 2

02

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Antic and the display list 11

02

02

02

41 Jump and watt for vertical
EO blank to display list which
7B starts at $7BEO

As you can see, This display list is short---only 32 bytes. Most display lists are less than 100 bytes
long. Furthermore, they are quite simple in structure and easy to set up.

To implement your own display list you must first design the display format. This is best done on
paper. Lay out the screen image and translate it. into a sequence of mode lines Keep track of the
scan line count of your display by looking up the scan line Requirements of the various modes in
Figure 2-1. Translate the sequence of mode lines into a sequence of ANTIC mode bytes. Put three
"blank 8 lines bytes ($70) at the top of the list Set bit 6 of the first display byte (that is make the
upper nybble a 4). This makes a load memory scan command. Follow with 2 bytes which specify
the address of the screen RAM (low then high). Then follow with the rest of the display bytes. At
the end of your display list put in the JVB instruction ($41) and the address of the top of the display
list Now store all of these bytes into RAM. They can be anywhere you want; just make sure they
don't overlay something else and your JVB points to the top of the display list The display list must
not cross a 1K address boundary. If you absolutely must have it. cross such a boundary, insert a
JMP instruction just in front of the boundary. The JMP instructions's operand is the address of the
first byte on the other side of the boundary. Next you must turn off ANTIC for a fraction of a second
while you rewrite its display list pointer. Do this by writing a 0 into SDMCTL at location $22F. Then
store the address of the new display list into $230 and $231 (low then high). Lastly, turn ANTIC
back on with a $22 into SDMCTL. During the vertical blank, while ANTIC is quiet, the operating
system (OS) will reload ANTIC's program counter with these values.

WRITING TO A CUSTOM DISPLAY LIST SCREEN

Screen memory can be placed anywhere in the address space of the computer. Normally the
display list specifies the beginning of the screen memory with the first display instruction---the
initial LMS instruction However, ANTIC can execute a new LMS instruction with each display line
of the display list if this is desired. In This way information from all over the address space of the
computer can be displayed on a single screen. This can be of value in setting up independent text
windows.

There are several restrictions in your placement of the screen memory. First screen memory
cannot cross a 4K address boundary. If you cannot avoid crossing a 4K boundary (as would be the
case in BASIC mode 8, which uses 8K of RAM) you must reload the memory scan counter with a
new LMS instruction. Second, if you wish to use any of the operating system screen routines you
must abide by the conventions the OS uses. This can be particularly difficult when using a modified
display list in a BASIC program. If you alter a standard display list from a BASIC program and then
attempt to PRINT or PLOT to the screen, the OS will do so under the assumption that the display
list is unchanged. This will probably result in a garbled display

There are three ways the display can fall when you attempt this. First BASIC may refuse to carry
out a screen operation because it is impossible to do in the graphics. mode that the OS thinks it is
in. The OS stores the value of the graphics mode that it thinks is on the screen in address $57.
You can fool the OS into cooperating by poking a different value there. Poke the BASIC mode
number, not the ANTIC mode number.

The second failure you might get arises when you mix mode lines with different screen memory
byte Requirements. Some mode lines require 40 bytes per line some require 20 bytes per line and
some require only 10 bytes per line. Let's say that you insert one 20-byte mode line into a display
list with 40 byte mode lines. Then you PRINT text to the display. Everything above the interloper
line is fine, but below it. the characters are shifted 20 spaces to the right. This is because the OS
assumed that each line would require 40 bytes and positioned the characters accordingly. But
ANTIC, when it encountered the interloper line took only 20 bytes of what the OS thought should
be a 40-byte line ANTIC interpreted the other 20 bytes as belonging to the next line and displayed
them there. This resulted in the next line and all later lines being shifted 20 spaces to the right.

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

12

De Re Atari

The only absolute way around This problem is to refrain from (using BASIC PRINTs and PLOTSs to
output to a custom display list screen. The quick-and-dirty solution is to organize the screen into
line groups that contain integer multiples of the standard byte requirement. That is, do not insert a
20-byte mode line into a 40- byte display instead insert two 20-byte lines or one 20-byte line and
two 10-byte lines So long as you retain the proper integer multiples, the horizontal shift will be
avoided.

This solution accentuates the third problem with indexed display lists and BASIC: vertical shifts.
The OS positions screen material vertically by calculating the number of bytes to skip down from
the top of the screen. In a standard 40-byte line display, BASIC would position the characters onto
the tenth line by skipping 360 bytes from the beginning. If you have inserted four 10-byte lines
BASIC will end up three lines further down the screen than you would otherwise expect.
Furthermore, different mode lines consume different numbers of scan lines, so the position on the
screen will not be quite what you expected if you do not take scan line costs into account.

As you can see, mixed mode displays can be difficult to use in conjunction with the OS. Often you
must fool the OS to make such displays work. To PRINT or PLOT to a mode window, POKE the
BASIC mode number of that window to address $57, then POKE the address of the top left pixel of
the mode window into locations $58 and $59 (low then high). In character modes, execute a
POSITION 0,0 to home the cursor to the top-left corner of the mode window. In map modes, all
PLOTs and DRAWTOs will be made using the top-left corner of the mode window as the origin of
the coordinate system.

The display list system can be used to produce appealing screen displays. Its most obvious use is
for mixing text and graphics. For example, you could prepare a screen with a bold BASIC mode 2
title, a medium size BASIC mode 1 subtitle, and small BASIC mode 0 fine print. You could then
throw in a BASIC mode 8 picture in the middle with some more text at the bottom. A good example
of this technique is provided by the display in the ATARI States and Capitals program.

The aforementioned problems will discourage the extensive use of such techniques from BASIC.
with assembly language routines, modified display lists are best used by organizing the screen into
a series of windows, each window having its own LMS instruction and its own independent RAM
area.

APPLICATIONS OF DISPLAY LISTS

One simple application of display list modifications is to vertically space lines on the screen by
inserting blank line bytes. This will add some vertical spacing which will highlight critical messages
and enhance the readability of some displays.

Another important use of display list manipulations is in providing access to features not available
from BASIC. There are three text modes supported by ANTIC that BASIC does not support. Only
display list manipulations gain the user access to these modes. There are also display list interrupt
and fine scrolling capabilities that are only available after the display list is modified. These
features are the subjects of Sections 5 and 6.

Manipulations with the LMS instruction and its operand offer many possibilities to the creative
programmer. For example, by changing the LMS during vertical blank, the programmer can
alternate screen images. This can be done at slow speed to change between predrawn displays
without having to redraw each one. Each display would continue to reside in (and consume) RAM
even while it. is not in use, but it. would be available almost instantly. This technique can also be
used for animation. By flipping through a sequence of displays cyclic animation can be achieved.
The program to do this would manipulate only 2 address bytes to display many thousands of bytes
of RAM.

It is also possible to superimpose images by flipping screens at high speed. The human eye has a
time resolution; of about 1/16 of a second, so a program can cycle between four images, one
every 1/60 of a second, so that each repeats every 1/15 of a second. In This way, up to four
images can appear to reside simultaneously on the screen. Of course, there are some drawbacks
to This method. first four separate displays may well cost a lot of RAM. Second, each display
image will be washed out because it. only shows up one quarter of the time. This means that the
background of all displays must be black, and each image must be bright. Furthermore, there will

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Antic and the display list 13

be some unpleasant screen flicker when this technique is used. A conservative programmer might
consider cycling between only three or even only two images. This technique can also be used to
extend the color and luminosity resolution; of the computer. By cycling between four versions of
the same image each version stressing one color or luminosity range, a wider range of colors and

luminosities is available. For example, suppose you wish to display a bar of many different
luminances. First set your four color registers to the values:

Background: 00
Playfield 1: 02

Playfield 2: OA
Playfield 3: 0C

Now put the following images into each of the screen RAM areas:

Pixel Contents (by Playfield Color Register)

First frame 111123232323
Second frame B111BB232323
Third frame B B11BBBB2323
Fourth frame B BB1BBDBBIBIB23
Effective luminancex4 2 4 6 8 10 12 20 24 30 3640 48

Perceived luminance

In this way, much finer luminance resolutions possible.

A final suggestion concerns a subject that is laden with opportunities but little understood as yet:
the dynamic display list This is a display list which the 6502 changes during vertical blank periods.
It should be possible to produce interesting effects with such lists For example, a text editing
program dynamically inserts blank lines above and below the screen line being edited set it. apart

from the other lines of text. As the cursor is moved vertically, the display list is changed. The
technique is odd but very effective.

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Chapter

Graphics
iIndirection

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Graphics indirection 15

3 Graphics indirection

(COLOR REGISTERS AND CHARACTER SETS)

Indirection is a powerful concept in programming. In 6502 assembly language, there are three
levels of indirection in referring to numbers. The first and most direct level is the immediate
addressing mode In which the number itself is directly stated:

LDA #$F4

The second level of indirection is reached when the program refers to a memory location that
holds the number:

LDA $0602

The third and highest level of indirection with the 6502 is attained when the program refers to a
pair of memory locations which together contain the address of the memory location that holds the
number. In the 6502, this indirection is complicated by the addition of an index:

LDA ($D0),Y

Indirection provides a greater degree of generality (and hence power) to the programmer. Instead
of trucking out the same old numbers every time you want to get something done, you can simply
point to them. By changing the pointer, you can change the behaviour of the program. Indirection is
obviously an important capability.

COLOR REGISTERS

Graphics indirection is built into the ATARI Home Computer in two ways: with color registers and
with character sets. Programmers first approaching this computer after programming other
systems often think in terms of direct colors. A color register is a more complex beast than a color.
A color specifies a permanent value. A color register is indirect; it holds any color value. The
difference between the two is analogous to the difference between a box-end wrench and a socket
wrench. The box-end wrench comes in one size only but a socket wrench can hold almost any size
socket. A socket wrench is more flexible but takes a little more skill to use properly. Similarly, a
color register is more flexible than a color but takes more skill to use effectively.

There are nine color registers in the ATARI 400/800 Computer; four are for player- missile
graphics and will be discussed in Section 4. The remaining five are not always used; depending on
the graphics mode used, as few as two registers or as many as five will show up on the screen. In
BASIC mode 0, only two and one-half registers are used because the hue value of the characters
is ignored; characters take the same hue as playfield register 2 but take their luminance from
register 1. The color registers are in CTIA at addresses $D016 through $D01A. They are
"shadowed" from OS RAM locations into CTIA during vertical blank. Figure 3-1 gives color register
shadow and hardware addresses.

Image Controlled Hardware OS Shadow
Label Address Label Address

Player 0 COLPMO D012 PCOLRO 2C0
Player 1 COLPM1 D013 PCOLR1 2C1
Player 2 COLPM2 D014 PCOLR2 2C2
Player 3 COLPM3 D015 PCOLR3 2C3
Playfield O COLPFO D016 COLORO 2C4
Playfield 1 COLPF1 D017 COLOR1 2C5
Playfield 2 COLPF2 D018 COLOR2 2C6
Playfield 3 COLPF3 D019 COLOR3 2C7
Background COLBK DOIA COLOR4 2C8

Figure 3-1 Color Register Labels and Addresses

For most purposes, the user controls the color registers by writing to the shadow locations. There
are only two cases in which the programmer would write directly to the CTIA addresses. The first
and most common is the display list interrupt which will be discussed in Section 5. The second

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

16

De Re Atari

arises when the user disables the OS vertical blank interrupt routines that move the shadow values
Into CTIA. Vertical blank interrupts are discussed in Section 8.

Colors are encoded in a color register by a simple formula. The upper nybble gives the hue value,
which is identical to the second parameter of the BASIC SETCOLOR command. Table 9-3 of the
BASIC Reference Manual lists hue values. The lower nybble in the color register gives the
luminance value of the color. It is the same as the third parameter in the BASIC SETCOLOR
command. The lowest order bit of this nybble is not significant. Thus, there are eight luminances
for each hue. There are a total of 128 colors from which to choose (8 luminances times 16 hues).
In this book, the term “color' denotes a hue- luminance combination.

Once a color is encoded into a color register, it is mapped onto the screen by referring to the color
register that holds it. In map display modes which support four color registers the screen data
specifies which color register is to be mapped onto the screen. Since there are four color registers
it takes only two bits to encode one pixel. Thus, each screen data byte holds data for four pixels.
The value in each pair of bits specifies which color register provides the color for that pixel.

In text display modes (BASIC's GRAPHICS modes 1 and 2) the selection of color registers is
made by the top two bits of the character code. This leaves only six bits for defining the character,
which is why these two modes have only 64 characters available.

Color register indirection gives you four special capabilities. First, you can choose from 128
different colors for your displays. This allows you to choose the color that most nearly meets your
needs.

Second, you can manipulate the color registers in real time to produce pretty effects. The simplest
version of this is demonstrated by the following BASIC line:

FOR I=0 TO 254 STEP 2:POKE 712,I:NEXT |

This line simply cycles the border color through all possible colors. The effect is quite pleasing and
certainly grabs attention. The fundamental technique can be extended in a variety of ways. A
special variation of this is to create simple cyclic animation by drawing a figure in four colors and
then cycle the colors through the color registers rather than redrawing the figure. The following
program illustrates the idea:

10 GRAPHICS 23

20 FOR X=0 TO 39

30 FOR I=0 TO 3

40 COLOR |

50 PLOT 4*X+1,0

60 DRAWTO 4*X+1,95

70 NEXT |

80 NEXT X

90 A=PEEK(712)

100 POKE 712,PEEK(710)
110 POKE 710,PEEK(709)
120 POKE 709,PEEK(708)
130 POKE 708,A

140 GOTO 90

The third application of color registers is to logically key colors to situations. For example, a paged
menu system can be made more understandable by changing the background color or the border
color for each page in the menu. Perhaps the screen could flash red when an illegal key is
pressed. The use of the color characters available in BASIC Graphics modes 1 and 2 can greatly
extend the impact of textual material. An account sum could be shown in red if the account is in
the red, or black if the account is in the black. Important words or phrases can be shown in special
colors to make them stand out. The use of colors in map modes (no text) can also improve the
utility of such graphics. A single graphics image (a monster, a boat, or whatever) could be
presented in several different colors to represent several different versions of the same thing. It
costs a great deal of RAM to store an image, but it costs very little to change the color of an

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Graphics indirection 17

existing image. For example, it would be much easier to show three different boats by presenting
one boat shape in three different colors than three different boat shapes.

The fourth and most important application of color registers Is used with display list interrupts. A
single color register can be used to put up to 128 colors onto a single screen. This very Important
capability will be discussed in Sect ton 5.

CHARACTER SETS

Graphics indirection is also provided through the use of redefinable character set. A standard
character set is provided in ROM, but there is no reason why this particular character set must be
used. The user can create and display any character set desired. There are three steps necessary
to use a redefined character set. First, the programmer must define the character set. This is the
most time-consuming step. Each character is displayed on the screen on an 8x8 grid; it is encoded
in memory as an 8-byte table. Figure 3-2 depicts the encoding arrangement.

Character Image Binary Hex Representation
Representation
00000000 00
00011000 18
00111100 3C
01100110 66
01100110 66
01111110 7E
01100110 66
00000000 00

Figure 3-2 Character Encoding

A full character set has 128 characters in it, each with a normal and an inverse video incarnation.
Such a character set needs 1024 bytes of space and must start on a 1K boundary. Character sets
for BASIC modes 1 and 2 have only 64 distinct characters, and so require only 512 bytes and must
start on a 1/2K boundary. The first 8 bytes define the zeroth character, the next 8 bytes define the
first character, and so on. Obviously, defining a new character set is a big job. Fortunately, there
are software packages on the market to make this job easier.

Once the character set is defined and placed into RAM, you must tell ANTIC where it can find the
character set. This is done by poking the page number of the beginning of the character table into
location $D409 (decimal 54281). The OS shadow location, which is the location you would
normally use, is called CHBAS and resides at $2F4 (decimal 756). The third step in using
character sets is to print the character you want onto the screen. This can be done directly from
BASIC with simple PRINT statements or by writing numbers directly into the screen memory.

A special capability of the system not supported in BASIC is the four- color character set option.
BASIC Graphics modes 1 and 2 support five colors, but each character in these modes is really a
two-color character; each one has a foreground color and a background color. The foreground
color can be any of four single colors, but only one color at a time can be shown within a single
character. This can be a serious hindrance when using character graphics.

There are two other text modes designed especially for character graphics. They are ANTIC
modes 4 and 5. Each character in these modes is only four pixels wide, but each pixel can have
four colors (counting background) The characters are defined just like BASIC Graphics mode 0
characters, except that each pixel is twice as wide and has two bits assigned to it to specify the
color register used. Unlike ANTIC modes 6 and 7 (BASIC modes 1 and 2), color register selection
is not made by the character name byte but instead by the defined character set. Each byte in the

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

18

De Re Atari

character table is broken into four bit pairs, each of which selects the color for a pixel. (This is why
there are only four horizontal pixels per character.) The highest bit (D7) of the character name byte
modifies the color register used. Color register selection is made according to Figure 3-3:

bit pair in D7 =0 D7=1
character defn
00 COLBAK COLBAK
01 PFO PFO
10 PF1 PF1
11 PF2 PF3

Figure 3-3 Color Register Selection for Characters
Using these text modes, multicolored graphics characters can be put onto the screen.

Another interesting ANTIC character mode is the lowercase descenders mode (ANTIC mode 3).
This mode displays 10 scan lines per mode line, but since characters use only eight bytes
vertically, the lower two scan lines are normally left empty. If a character in the last quarter of the
character set is displayed, the top two scan lines of the character will be left empty; the data that
should have been displayed there will instead be shown on the bottom two lines. This allows the
user to create lowercase characters with descenders.

APPLICATIONS OF CHARACTER SETS

Many interesting and useful application possibilities spring from character set Indirection. The
obvious application is the modified font. A different font can give a program a unique appearance.
It is possible to have Greek, Cyrillic, or other special character sets. Going one step further, you
can create graphics fonts. The ENERGY CZAR(TM) computer program uses a redefined
character set for bar graphs. A character occupies eight pixels; tints means that bar charts
implemented with standard characters have a resolution of eight pixels, a rather poor resolution.
ENERGY CZAR uses a special character set in which some of the less popular text symbols
(ampersands, pound signs, and the like) have been replaced with special bar chart characters.
One character is a one-pixel bar, another is a two-pixel bar, and so on to the full eight-pixel bar.
The program can thus draw detailed bar charts with resolution of a single pixel. Figure 3-4 shows a
typical display from this program. The mix of text with map graphics is only apparent; the entire
display is constructed with characters.

M PRXYXCES CBS ~~oUuaAabD>

COAL T
14

OLL
A5

NMLGAS

16

R
A4

I
—————
e ee———
—
———
_
e———
e e——

Figure 3-4 Energy CZAR Bar Charts

In many applications, character sets can be created that show special images. For example, by
defining a terrain graphics character set with river characters, forest characters, mountain

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Graphics indirection 19

characters, and so forth, It is possible to make a terrain map of any country. Indeed, with
imagination a map of terrain on a different planet can be done just as easily. When doing this, it is
best to define five to eight characters for each terrain type. Each variation of a single type should
be positioned slightly differently in the character pixel. By mixing the different characters together,
It is possible to avoid the monotonous look that Is characteristic of primitive character graphics.
Most people won't realize that the resulting map uses character graphics until they study the map
closely. Figure 3-5 shows a display of a terrain map created with character set graphics. The
reproduction in black and white does not do justice to the original display, which has up to 18
colors.

dl-d-:._
u@'" % [] 3"

PRESS START WHEN ORDERS ARE IN

Figure 3-5 Terrain Map With Character Set Graphics

You could create an electronics character set with transistor characters, diode characters, wire
characters, and so forth to produce an electronics schematics program. Or you could create an
architectural character set with doorway characters, wall characters, corner characters, and so on
to make an architectural blueprint program. The graphics possibilities opened up by character
graphics with personal computers have not been fully explored.

Characters can be turned upside down by pokeing a 4 into location 755. One possible application
of this feature might be for displaying playing cards (as in a Blackjack game). The upper half of the
card can be shown right side up; with a display list interrupt the characters can be turned upside
down for the lower half of the card. This feature might also be of some use in displaying images
with mirror reflections (reflection pools, lakes, etc.

Even more exciting possibilities spring to mind when you realize that It is quite practical to change
character sets while the program is running. A character set costs either 512 bytes or 1024 bytes;
in either case It is quite inexpensive to keep multiple character sets in memory and flip between
them during program execution. There are three time regimes for such character set multiplexing:
human slow (more than 1 second); human fast (1/60 second to 1 second); and machine fast
(faster than 1/ 60 sec).

Human-slow character set multiplexing is useful for "change of scenery” work. For example, a
space travel program might use one graphics character set for one planet, another set for space,
and a third set for another planet. As the traveller changes locations, the program changes the
character set to give exotic new scenery. An adventure program might change character sets as
the player changes locales.

Human-fast character set multiplexing is primarily of value for animation. This can be done in two
ways: changing characters within a single character set, and changing whole character sets. The
SPACE INVADERS (trademark of Taito America Corp.) program on the ATARI Home Computer

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

20

De Re Atari

uses the former technique. The invaders are actually characters. By rapidly changing the
characters, the programmer was able to animate them. This was easy because there are only six
different monsters; each has four different Incarnations.

High-speed cyclic animation of an entire screen is possible by setting up a number of character
sets, drawing the screen image, and then simply cycling through the character sets. If each
character has a slightly different incarnation in each of the character sets, that character will go
through an animated sequence as the character sets are changed. In this way a screen full of
objects could be made to cyclically move with a very simple loop. Once the character set data is in
place and the screen has been drawn, the code to animate the screen would be this simple:

1000 FOR 1=1TO 10

1010 POKE 756,CHARBASE(l)
1020 NEXT |

1030 GOTO 1000

Computer-fast character set animation is used to put multiple character sets onto a single screen.
This makes use of the display list interrupt capability of the computer. Display list interrupts are
discussed in Sect ton 5.

The use of character sets for graphics and animation has many advantages and some limitations.
The biggest advantage is that it costs very little RAM to produce detailed displays. A graphics
display using BASIC mode 2 characters (such as the one shown in Figure 3-5) can give as much
detail and one more color than a BASIC mode 7 display. Yet the character Image will cost 200
bytes while the map image will cost 4000 bytes. The RAM cost for multiple character sets is only
512 bytes per set, so It Is inexpensive to have multiple character sets. Screen manipulations with
character graphics are much faster because you have less data to manipulate. However, character
graphics are not as flexible as map graphics. You cannot put anything you want anywhere on the
screen. This limitation would preclude the use of character graphics in some applications.
However, there remain many graphics applications for which the program need display only a
limited number of predefined shapes in fixed locations. In these cases, character graphics provide
great utility.

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Chapter

Player-Missile
graphics

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

22

De Re Atari

Player-Missile graphics

DIFFICULTIES WITH HIGH-SPEED ANIMATION

Animation is an important capability of any home computer system. Activity on the screen can
greatly add to the excitement and realism of any program. Certainly animation is crucial to the
appeal of many computer games. More importantly, an animated image can convey information
with more impact and clarity than a static image. It can draw attention to an item or event of
importance. It can directly show a dynamic process rather than indirectly talk about it. Animation
must accordingly be regarded as an important element of the graphics capabilities of any computer
system.

The conventional way to effect animation with home computers is to move the image data through
the screen RAM area. This requires a two-step process. First, the program must erase the old
image by writing background values to the RAM containing the current image. Then the program
must write the image data to the RAM corresponding to the new position of the image. By
repeating this process over and over, the image will appear to move on the screen.

There are problems with this technique. First, if the animation is being done in a graphics mode
with large pixels, the motion will not be smooth; the image will jerk across the screen. With other
computers the only solution is to use a graphics mode with smaller pixels (higher resolution). The
second problem is much worse. The screen is a two-dimensional image, but the screen RAM is
organized one-dimensionally. This means that an image which is contiguous on the screen will not
be contiguous in the RAM. The discrepancy is illustrated in Figure 4-1.

Image Correspondin

g
Bytes in RAM

00 00 00
00 99 00
00 BD 00
00 FF 00
00 BD 00
00 99 00
00 00 00

Spacing of Bytes in RAM:

00 00 00 00 99 00 00 BD 00 00 FF 00 00 BD 00 00 99 00 00 00 00
Image Bytes Scattered Through RAM

Figure 4-1 Noncontiguous RAM Images

The significance of this discrepancy does not become obvious until you try to write a program to
move such an image. Look how the bytes that make up the image are scattered through the RAM.
To erase them, your program must calculate their address. This calculation is not always easy to
do. The assembly code just to access a single byte at screen location (XPOS, YPOS) would look
like this (this code assumes 40 bytes per screen line):

LDA SCRNRM Addr ess of begi nning of screen RAM
STA PO NTR zero page pointer

LDA SCRNRM+1 hi gh order byte of address

STA PO NTR+1 hi gh order pointer

LDA #$00

STA TEMPA+1 tenporary register

LDA YPCS vertical position

ASL A times 2

ROL TEMPA+1 shift carry into TEMPA+1
ASL A times 4

ROL TEMPA+1 shift carry again

ASL A times 8

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Player-Missile graphics 23

ROL TEMPA+1 shift again

LDX TEMPA+1 save YPOS*8

STX TEMPB+1 into TEMPB

STA TEMPB | ow byte

ASL A times 16

ROL TEMPA+1

ASL A times 32

ROL TEMPA+1

CLC

ADC TEMPB add YPOS*8 to get YPOS*40
STA TEMPB

LDA TEMPA+1 now do high order byte
ADC TEMPB+1

STA TEMPB+1

LDA TEMPB TEMPB contains the offset fromthe top of screen to pixel
CLC

ADC PO NTR

STA PO NTR

LDA TEMPB+1

ADC PO NTR+1

STA PO NTR+1

LDY XPGS

LDA (PO NTR), Y

Clearly, this code to access a screen location is too cumbersome. This is certainly not the most
elegant or fastest code to solve the problem. Certainly a good programmer could take advantage
of special circumstances to make the code more compact. The point is that accessing pixels on a
screen takes a lot of computing. The above routine takes about 100 machine cycles to access a
single byte on the screen. To move an image that occupies, say, 50 bytes, would require 100
accesses or about 10,000 machine cycles or roughly 10 milliseconds. This may not sound like
much, but if you want to achieve smooth motion, you have to move the object every 17
milliseconds. If there are other objects to move or any calculations to carry out there isn't much
processor time left to devote to them. What this means is that this type of animation (called
"playfield animation”) is too slow for many purposes. You can still get animation this way, but you
are limited to few objects or small objects or slow motion or few calculations between maotion. The
trade-offs that a programmer must make in using such animation are too restrictive.

PLAYER-MISSILE FUNDAMENTALS

The ATARI Home Computer solution to this problem is player-missile graphics. In order to
understand player-missile graphics, it is important to understand the essence of the problem of
playfield animation: the screen image is two-dimensional while the RAM image is one-dimensional.
The solution was to create a graphics object that is one-dimensional on the screen as well as
one-dimensional in RAM. This object (called a player) appears in RAM as a table that is either 128
or 256 bytes long. The table is mapped directly to the screen. It appears as a vertical band
stretching from the top of the screen to the bottom. Each byte in the table is mapped into either
one or two horizontal scan lines, with the choice between the two made by the programmer. The
screen image is a simple bit-map of the data in the table. If a bit is on, then the corresponding pixel
in the vertical column is lit; if the bit is off, then the corresponding pixel is off. Thus, the player
image is not strictly one-dimensional; it is actually eight bits wide.

Drawing a player image on the screen is quite simple. First you draw a picture of the desired image
on graph paper. The image must be no more than eight pixels wide. You then translate the image
into binary code, substituting ones for illuminated pixels and zeros for empty ones. Then you
translate the resulting binary number into decimal or hexadecimal, depending on which is more
convenient. Then you store zeros into the player RAM to clear the image. Next, store the image
data into the player RAM, with the byte at the top of the player image going first, followed by the
other image bytes in top to bottom sequence. The further down in RAM you place you place data,
the lower the image will appear on the screen.

VERTICAL MOTION

Animating this image is very easy. Vertical motion is obtained by moving the image data through
the player RAM. This is, in principle, the same method used in playfield animation, but there is a
big difference in practice; the move routine for vertical motion is a one-dimensional move instead
of a two-dimensional move. The program does not need to multiply by 40 and it often does not
need to use indirection. It could be as simple as:

LDX $01
LOOP LDA PLAYER, X

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

24

De Re Atari

STA PLAYER-1, X
I NX
BNE LOOP

This routine takes about 4 milliseconds to move the entire player, about half as long as the
playfield animation routine which actually moves only 50 bytes where this one moves 256 bytes. If
high speed is necessary, the loop can be trimmed to move only the image bytes themselves rather
than the whole player; then the loop would easily run in about 100-200 microseconds. The point
here is that vertical motion with players is both simpler and faster than motion with playfield
objects.

HORIZONTAL MOTION

Horizontal motion is even easier than vertical motion. There is a register for the player called the
horizontal position register. The value in this register sets the horizontal position of the player on
the screen. All you do is store a humber into this register and the player jumps to that horizontal
position. To move the player horizontally simply change the number stored in the horizontal
position register. That's all there is to it.

Horizontal and vertical motion are independent; you can combine them in any fashion you choose.

The scale for the horizontal position register is one color clock per unit. Thus, adding one to the
horizontal position register will move the player one color clock to the right. There are only 228
color clocks in a singe scan line; furthermore, some of these are not displayed because of
overscan. The horizontal position register can hold 256 positions; some of these are off the left or
right edge of the screen. Position 47 corresponds to the left edge of the standard playfield; position
208 corresponds to the right edge of the standard playfield. Thus, the visible region of the of the
player is in horizontal positions 47 through 208. Remember, however, that this may vary from
television to television due to differences in overscan. A conservative range of values is from 60 to
200. This coordinate range can sometimes be clumsy to use, but it does offer a nice feature: a
simple way to remove a player from the screen is to set the player's horizontal position to zero.
With a single load and store in assembly (or a singe POKE in BASIC), the player will disappear.

OTHER PLAYER-MISSILE FEATURES

The system described so far makes it possible to produce high-speed animation. There are a
number of embellishments which greatly add to its overall utility. The first embellishment is that
there are four individual players to use. These players all have their own sets of control registers
and RAM area; thus their operation is completely independent. They are labelled PO through P3.
They can be used side by side to give up to 32 bits of horizontal resolution, or they can be used
independently to give four movable objects.

Each player has its own color register; this color register is completely independent of the playfield
color registers. The player color registers are called COLP(X) and are shadowed at PCOLR(X).
This gives you the capability to put much more color onto the screen. However, each player has
only one color; multicolored players are not possible without display list interrupts (display list
interrupts are discussed in Section 5).

Each player has a controllable width; you can set it to have normal width, double width, or
qguadruple width with the SIZEP(X) registers. This is useful for making players take on different
sizes. You also have the option of choosing the vertical resolution of the players. You can use
single-line resolution, in which each byte in the player table occupies one horizontal scan line, or
double-line resolution, in which each byte occupies two horizontal scan lines. With single-line
resolution, each player bit-map table is 256 bytes long; with double-line resolution each table is
128 bytes long. This is the only case where player properties are not independent; the selection of
vertical resolution applies to all players. Player vertical resolution is controlled by bit D4 of the
DMACTL register. In single-line resolution, the first 32 bytes in the player table area lie above the
standard playfield. The last 32 bytes lie below the standard playfield. In double-line resolution, 16
bytes lie above and 16 bytes lie below the standard playfield.

MISSILES

The next embellishment is the provision of missiles. These are 2-bit wide graphics objects
associated with the players. There is one missile assigned to each player; it takes its color from the
player's color register. Missile shape data comes from the missile bit-map table in RAM just in front

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Player-Missile graphics 25

of the player's table. All four missiles are packed into the same table (four missiles times 2 bits per
missile gives 8 bits). Missiles can move independently of players; they have their own horizontal
position registers. Missiles have their own size register, SIZEM, which can set the horizontal width
just like the SIZEP(X) registers do for players. However, missiles cannot be set to different sizes;
they are all set together. Missiles are useful as bullets or for skinny vertical lines on the screen. If
desired, the missiles can be grouped together into a fifth player, in which case they take the color
of playfield color register 3. This is done by setting bit D4 of the priority control register (PRIOR).
Note that missiles can still move independently when this option is in effect; their horizontal
positions are set by their horizontal position registers. The fifth player enable bit only affects the
color of the missiles.

You move a missile vertically the same way that you move a player: by moving the missile image
data through the missile RAM area. This can be difficult to do because missiles are grouped into
the same RAM table. To access a single missile, you must mask out the bits for the other missiles.

PLAYFIELD AND PLAYFIELD PRIORITIES

An important feature of player-missile graphics is that players and missiles are completely
independent of the playfield. You can mix them with any graphics mode, text or map. This raises a
problem: what happens if a player ends up on top of some playfield image? Which image has
priority? You have the option to define the priorities used in displaying players. If you wish, all
players can have priority over all playfield color registers. Or you can set all playfield color registers
(except background) to have priority over all players. Or you can set player 0 and player 1
(henceforth referred to as PO and P1) to have priority over all playfield color registers, with P2 and
P3 having less priority than the playfield. Or you can set playfield color registers 0 and 1 (PFO and
PF1) the have priority over all players, which then have priority over PF2 and PF3. These priorities
are selected with the priority control register (PRIOR) which is shadowed at GPRIOR. This
capability allows a player to pass in front of one image and behind another, allowing
three-dimensional effects.

HARDWARE COLLISION DETECTION

The final embellishment is the provision for hardware collision detection. This is primarily of value
for games. You can check if any graphic object (player or missile) has collided with anything else.
Specifically, you can check for missile-player collisions, missile-playfield collisions, player-player
collisions, and player-playfield collisions. There are 54 possible collisions, and each one has a bit
assigned to it that can be checked. If the bit is set, a collision has occurred. These bits are mapped
into 15 registers in CTIA (only the lower 4 bits are used and some are not meaningful). These are
read only registers; they cannot be cleared by writing zeros to them. The registers can be cleared
for further collision detection by writing any value to register HITCLR. All collision registers are
cleared by this command.

In hardware terms, a collision occurs when a player image coincides with another image; thus, the
collision bit will not be set until the part of the screen showing the collision is drawn. This means
that collision detection might not occur until as much as 16 milliseconds have elapsed since the
player was moved. The preferred solution is to execute player motion and collision detection during
the vertical blank interrupt routine (see Section 8 for a discussion of vertical blank interrupts). In
this case, collision detection should be checked first, then collisions cleared, then players moved.
Another solution is to wait at least 16 milliseconds after moving a player before checking for a
collision involving that player.

There are a number of steps necessary to use player-missile graphics. First you must set aside a
player-missile RAM area and tell the computer where it is. If you use single-line resolution, this
RAM area will be 1280 bytes long; if you use double-line resolution it will be 640 bytes long. A good
practice is to use the RAM area just in front of the display area at the top of RAM. The layout of the
player-missile area is shown in Figure 4-2.

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

26

De Re Atari
double line single line
PMBASE
unused
+ 384 unused
+512 M3 | M2|Mi| MO
von [ot
+768 + 768
Player 2
+ 896 Player 3 M3 |[M2|M1| MO
+1024 +1024
Player 0
+1280
Player 1
+1536
Player 2
+1792
Player 3
+2048

Figure 4-2 Player-Missile RAM Area Layout

The pointer to the beginning of the player-missile area is labelled PMBASE. Because of internal
limitations of ANTIC, PMBASE must be on a 2K address boundary for single-line resolution, or a
1K address boundary for double-line resolution. If you elect not to use all of the players or none of
the missiles, the areas of RAM set aside for the unused objects may be used for other purposes.
Once you have decided where your player-missile RAM area will be, you inform ANTIC of this by
storing the page number of PMBASE into the PMBASE register in ANTIC. Note that the address
boundary restrictions on PMBASE preclude vertical motion of players by modifying PMBASE.

The next step is to clear the player and missile RAM by storing zeros into all locations in the
player-missile RAM area. Then draw the players and missiles by storing image data into the
appropriate locations in the player-missile RAM area.

Next, set the player parameters by setting the player color, horizontal position, and width registers
to their initial values. If necessary, set the player/playfield priorities. Inform ANTIC of the vertical
resolution you desire by setting bit D4 of register DMACTL (shadowed at SDMCTL) for single-line
resolution, and clearing the bit for double-line resolution. Finally, enable the players by setting the
PM DMA enable bit in DMACTL. Be careful not to disturb the other bits in DMACTL. A sample
BASIC program for setting up a player and moving it with the joystick is given below:

1 PMBASE=54279: REM Pl ayer-mi ssil e base pointer

2 RAMIOP=106: REM CS top of RAM pointer

3 SDMCTL=559: REM RAM shadow of DMACTL register
4 CGRACTL=53277: REM CTI A graphics control register
5 HPOSP0=53248: REM Hori zontal position of PO

6 PCOLR0=704: REM Shadow of player 0 col or

10 GRAPHICS 0: SETCOLOR 2,0, 0: REM Set background col or to bl ack
20 X=0: REM BASI C s pl ayer horizontal position
30 Y=48: REM BASI C s player vertical position
40 A=PEEK(RAMIOP) - 8: REM Get RAM 2K bel ow top of RAM
50 POKE PMBASE, A: REM Tell ANTIC where PM RAM i s

60 MYPMBASE=256* A: REM Keep track of PM RAM address
70 POKE SDMCTL, 46: REM Enable PM DVA with 2-line res
80 POKE GRACTL, 3: REM Enabl e PM di spl ay

90 POKE HPOSPO, 100: REM Decl are horizontal position
100 FOR | =MYPMBASE+512 TO MYPMBASE+640: REM this | oop clears pl ayer

110 PCKE 1,0

120 NEXT |

130 FOR | =MYPMBASE+512+Y t o MYPMBASE+518+Y

140 READ A: REM This | oop draws the player

150 PCKE |, A

160 NEXT |

170 DATA 8, 17, 35, 255, 32,16, 8

180 POKE PCOLRO, 88: REM Make the player pink

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Player-Missile graphics 27

190 A=STI CK(0): REM Read j oysti ck
200 I F A=15 THEN GOTO 190: REM If inactive, try again
210 | =11 THEN X=X-1: POKE HPOSPO, X

220 | F A=7 THEN X=X+1: POKE HPOSPO, X

230 | F A<>13 THEN GOTO 280

240 FOR |=8 TO 0 STEP -1

250 POKE MYPNMBASE+512+Y+l , PEEK(MYPMBASE+511+Y+l)

260 NEXT |

270 Y=Y+1

280 | F A<>14 THEN GOTO 190

290 FOR I =0 TO 8

300 POKE MYPMBASE+511+Y+l , PEEK(MYPMBASE+512+Y+])

310 NEXT |

320 Y=Y-1

330 GOTO 190

F
F
F
F

Once players are displayed, they can be difficult to remove from the screen. This is because the
procedure by which they are displayed involves several steps. First, ANTIC retrieves player-missile
data from RAM (if such retrieval is enabled in DMACTL). Then ANTIC ships the player-missile
data to CTIA (if such action is enabled in GRACTL). CTIA displays whatever is in its player and
missile graphics registers (GRAFPO through GRAFP3 and GRAFM). Many programmers attempt
to turn off player-missile graphics by clearing the control bits in DMACTL and GRACTL. This only
prevents ANTIC from sending new player-missile data to CTIA, the old data in the GRAF(X)
registers will still be displayed. To completely clear the players the GRAF(X) registers must be
cleared after the control bits in DMACTL and GRACTL have been cleared. A simpler solution is to
leave the player up but set its horizontal position to zero. Of course, if this solution is used, ANTIC
will continue to use DMA to retrieve player-missile data, wasting roughly 70,000 machine cycles
per second.

APPLICATIONS OF PLAYER-MISSILE GRAPHICS

Player-missile graphics allow a number of very special capabilities. They are obviously of great
value in animation. They do have limitations: there are only four players and each is only eight bits
wide If you need more bits of horizontal resolution you can always fall back on playfield animation.
But for high-speed animation or quick and dirty animation, player-missile graphics work very well.

It is possible to bypass ANTIC and write player-missile data directly into the player-missile graphics
registers (GRAFP(X)) in CTIA. This gives the programmer more control over player-missile
graphics. It also increases his responsibilities concomitantly. The programmer must maintain a bit
map of player-missile data and move it into the graphics registers at the appropriate times. The
6502 must therefore be slaved to the screen drawing cycle. (See the discussion of kernels in
Chapter 5.) This is a clumsy technique that offers minor improvements in return for major
programming efforts. The programmer who bypasses the hardware power offered by ANTIC must
make up for it with his own effort.

Players can also be used to produce apparent 3-dimensional motion. This is accomplished with
the player width option. Each player is drawn with one of several bit maps. One bit map shows the
player as 6 bits wide, and another shows the player in 8 bits. When the 6 bit player is drawn at
normal resolution, it will be 6 color clocks wide. The next size step is achieved by going to double
width with the 6 bit image; this will be 12 color clocks wide. The 8 bit image will be 16 color clocks
wide. Similarly, going to quadruple width will produce images 24 and 32 color clocks wide. Thus,
the image can grow in size from 6 color clocks to 32 color clocks wide. This technique is used very
effectively in STAR RAIDERS. The Zylons there are two players with 16 bits, so the size transitions
are even smoother.

Player-missile graphics offer many capabilities in addition to animation. Players are an excellent
way to increase the amount of color in a display. The four additional color registers they provide
allow four more colors on each line of the display. Of course, the 8-bit resolution does limit he
range of their application. There is a way around this that can sometimes be used. Take a player
at quadruple width and put it onto the screen. Then set the priorities so that the player has lower
priority than a playfield color. Next, reverse that playfield color with background, so that the
apparent background color of the screen is really a playfield color. The player disappears behind
this new false background. Now cut a hole in the false background by drawing true background on
it. The player will show up in front of the true background color, but only in the area where true
background has been drawn. In this way the player can have more than eight bits of horizontal
resolution. A sample program for doing this:

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

28

De Re Atari
1 RAMTOP=106:REM OS top of RAM pointer
2 PMBASE=54279:REM ANTIC player-missile RAM pointer
3 SDMCTL=559:REM Shadow of DMACTL
4 GRACTL=53277:REM CTIA graphics control register
5 HPOSP0=53248:REM Horizontal position register of PO
6 PCOLR0=704:REM Shadow of player O color register
7 SIZEP0=53256:REM Player width control register
8 GPRIOR=623:REM Priority control register

10 GRAPHICS 7

20 SETCOLOR 4,8,4

30 SETCOLOR 2,0,0

40 COLOR 3

50 FOR Y=0 TO 79:REM This loop fills the screen
60 PLOTO,Y

70 DRAWTO 159,Y

80 NEXTY

90 A=PEEK(RAMTOP)-20:REM Must back up further for GR. 7
100 POKE PMBASE,A

110 MYPMBASE=256*A

120 POKE SDMCTL,46

130 POKE GRACTL,3

140 POKE HPOSP0,100

150 FOR I=MYPMBASE+512 TO MYPMBASE+640

160 POKE 1,255:REM Make player solid color

170 NEXT |

180 POKE PCOLRO0,88

190 POKE SIZEPO0,3:REM Set player to quadruple width
200 POKE GPRIOR,4:REM Set priority

210 COLOR 4

220 FOR Y=30 TO 40
230 PLOT Y+22)Y
240 DRAWTO Y+43,Y
250 NEXT Y

This program produces the following display:

m—
.

—

—_—
e T—
e

m——

—

H

Figure 4-3 Masking a Player for More Resolution

SPECIAL CHARACTERS
Another application of player-missile graphics is for special characters. There are many special
types of characters that cross vertical boundaries in normal character sets. One way to deal with
these is to create special character sets that address this problem. Another way is to use a player.
Subscripts, integral signs, and other special symbols can be done this way. A sample program for
doing this is:

1 RAMIOP=106: REM OS top of RAM pointer

2 PVBASE=54279: REM ANTI C pl ayer-mi ssil e RAM poi nter

Converted by Andreas Bertelmann for ABBUC - www.abbuc.de

Player-Missile graphics

90

100
110
120
130
140
150
160
170
180
190

29

SDMCTL=559: REM Shadow of DMACTL

GRACTL=53277: REM CTI A's graphics control register
HPOSP0=53248: REM Hori zontal position register of PO
PCOLR0=704: REM Shadow of player O col or register

GRAPHI CS 0: A=PEEK(RAMTIOP) - 16: REM Must back up for 1-line resolution
POKE PMBASE, A

MYPVBASE=256* A

POKE SDMCTL, 62

POKE GRACTL, 3

POKE HPOSPO, 102

FOR | =MYPMBASE+1024 TO MYPMBASE+1280

POXE 1,0

NEXT |

POKE PCOLRO, 140

FOR | =MYPMBASE+512+Y t o MYPMBASE+518+Y
READ X

POKE MYPMBASE+1100+I, X

NEXT X

DATA 14, 29, 24, 24, 24, 24, 24, 24

DATA 24, 24, 24, 24, 24, 24,184, 112

?" " REM Cl ear screen
PCsSI TI ON 15, 6

?2" xdx"

This program produces the following display:

'm|n|||||

Figure 4-

x dx

4 Using a Player as a Special Character

A particularly useful application of players is for cursors. With their ability to smoothly move
anywhere over the screen without disturbing its contents they are ideally suited for such
applications. The cursor can change color as it moves over the screen to indicate what it has

under it.

Player-missile graphics provide many capabilities. Their uses for action games as animated

objects are obvious. They have many serious uses as well. They can ad